K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GH
18 tháng 7 2023

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có �^+�⏜=900 nên �^=900

Áp dụng định lí Py – ta – go,

Ta có 

��2=��2+��2.

��2=��2+��2

Nên 

15 tháng 7 2023

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác

 

 

 

25 tháng 1 2018

Vẽ tứ giác lồi ABCD

+Xét t/g AOB có OA+OB>AB (trong tam giác tổng chiều dài 2 cạnh lớn hơn chiều dài cạnh còn lại) (1)

+ Tương tự ta cũng có OB+OC>BC (2)

+ OC+D>CD (3)

+ OD+OA>AD (4)

Cộng 2 vế của (1); (2); (3); (4) ta có

2(OA+OC+OB+OD)>AB+BC+CD+AD=C (C là chu vi tứ giác)

=> 2(AC+BD)>C => AC+BD>C/2 (dpcm)

20 tháng 7 2018
Bài 3 mình làm được rồi, có phải bằng 10cm ko vậy ạ?
AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Theo cách đặt giao của AC, BD là O của bạn Khôi thì phần 1 có thể CM như sau:

Áp dụng công thức BĐT trong tam giác thì:

\(AD< AO+OD\)

\(BC< BO+OC\)

Cộng theo vế 2 BĐT trên:

\(AD+BC< AO+CO+BO+DO=AC+BD\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Còn đoạn "Theo câu 1 thì AC < p và BD < p$ là không có cơ sở em nhé. 

11 tháng 10 2018

a)

Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài. Chẳng hạn tứ giác ABCD ở hình trên.

Ta có: AC = 6cm, BD = 3,6cm và AC ⊥ BD.

Diện tích tứ giác ABCD là:

Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà AC = 6cm ; BD = 3,6 cm nên Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Hình vuông có 2 đường chéo vuông góc nên theo công thức trên, diện tích của nó là: Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Do tứ giác có hai đường chéo vuông góc tại trung điểm của mỗi đường (gt)

Suy ra tứ giác là hình thoi

Độ dài cạnh là \(52:4 = 13\) (cm)

Do hình thoi có hai đường chéo vuông góc, tạo thành 4 tam giác vuông bằng nhau.

Độ dài nửa đường chéo còn lại là: \(\sqrt {{{13}^2} - {{\left( {24:2} \right)}^2}}  = \sqrt {169 - 144}  = \sqrt {25}  = 5\) (cm)

Độ dài đường chéo còn lại là: \(5.2 = 10\) (cm)