K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)

Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)

Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng : 

\(\sqrt{x}+1\)-5-115
\(\sqrt{x}\)-6 (loại)-2(loại04
x  02
15 tháng 9 2017

bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa

17 tháng 9 2017

M= \(\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{5}{\sqrt{x}+1}+1\)

Để M nguyên \(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}+1\)nguyên 

\(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\in\)Ư(5)={1;5;-1;-5}

Ta có bảng :

\(\sqrt{x}+1\)-5-115
\(x\)ko có giá trị thỏa mãnko có giá trị thỏa mãn02

Vậy các số hữu tỉ a thõa mãn là (0 ;2 )

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$

6 tháng 10 2018

Ta có \(M=\frac{\sqrt{a}+2}{\sqrt{a}-2}=\frac{\sqrt{a}-2}{\sqrt{a}-2}+\frac{4}{\sqrt{a}-2}=1+\frac{4}{\sqrt{a}-2}\)

Để M nguyên thì \(\frac{4}{\sqrt{a}-2}\)nguyên

Ta có bảng sau:

\(\sqrt{a}\)-21-12-24-4
aLoại1160LoạiLoại

Vậy tại a là 0;16;2 thì M nguyên

6 tháng 10 2018

Đề bài đâu có nói căn a trừ 2 nguyên đâu :)

4 tháng 9 2021

a=3√x +11/√x +2

=3(√x +2)+5/√x +2

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)