Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)
Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)
Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng :
\(\sqrt{x}+1\) | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -6 (loại) | -2(loại | 0 | 4 |
x | 0 | 2 |
bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa
\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=\frac{\sqrt{x}-1+4}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)
Để P đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-1}\) đạt giá trị nguyên
<=>4 chia hết cho \(\sqrt{x}-1\)
<=>\(\sqrt{x}-1\inƯ\left(4\right)\)
<=>\(\sqrt{x}-1\in\left\{-4;-2;-1;1;2;4\right\}\)
<=>\(\sqrt{x}\in\left\{-3;-1;0;2;3;5\right\}\)
<=>\(x\in\left\{0;4;9;25\right\}\)
Cách giải lớp 6 á, thông cảm :)
rút gọn A= ( \(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
M= \(\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{5}{\sqrt{x}+1}+1\)
Để M nguyên \(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}+1\)nguyên
\(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}\)nguyên
\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\in\)Ư(5)={1;5;-1;-5}
Ta có bảng :
Vậy các số hữu tỉ a thõa mãn là (0 ;2 )