Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Bài 1:
\(M=\dfrac{9}{\sqrt{11}-\sqrt{2}}-\dfrac{\sqrt{22}-\sqrt{10}}{\sqrt{11}-\sqrt{5}}-\dfrac{22}{\sqrt{11}}\)
\(=\dfrac{9\left(\sqrt{11}+\sqrt{2}\right)}{11-2}-\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{5}\right)\left(\sqrt{11}+\sqrt{5}\right)}{11-5}-\dfrac{2.\left(\sqrt{11}\right)^2}{\sqrt{11}}\)
\(=\sqrt{11}+\sqrt{2}-\sqrt{2}-2\sqrt{11}=-\sqrt{11}\)
\(M=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+\dfrac{a-b}{\sqrt{a}+\sqrt{b}}+\dfrac{2b}{\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(\sqrt{b}\right)^2}{\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}+\sqrt{a}-\sqrt{b}+2\sqrt{b}=2\sqrt{a}\)
Bài 2:
a)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(M=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\) (*)
b)
Thay x = 0,25 vào (*), ta có:
\(M=\dfrac{2}{\sqrt{\dfrac{1}{4}}+1}=\dfrac{4}{3}\)
c)
\(M\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\ge1\)
\(\Leftrightarrow2\ge\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\le1\)
\(\Leftrightarrow x\le1\)
mà x khác 1 và x > 0(theo ĐKXĐ)
=> 0 < x < 1 thì M \(\ge\) 1
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)
Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)
Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng :
\(\sqrt{x}+1\) | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -6 (loại) | -2(loại | 0 | 4 |
x | 0 | 2 |
bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$