K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)

Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)

Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng : 

\(\sqrt{x}+1\)-5-115
\(\sqrt{x}\)-6 (loại)-2(loại04
x  02
15 tháng 9 2017

bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa

17 tháng 9 2017

M= \(\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{5}{\sqrt{x}+1}+1\)

Để M nguyên \(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}+1\)nguyên 

\(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\in\)Ư(5)={1;5;-1;-5}

Ta có bảng :

\(\sqrt{x}+1\)-5-115
\(x\)ko có giá trị thỏa mãnko có giá trị thỏa mãn02

Vậy các số hữu tỉ a thõa mãn là (0 ;2 )

6 tháng 10 2018

Ta có \(M=\frac{\sqrt{a}+2}{\sqrt{a}-2}=\frac{\sqrt{a}-2}{\sqrt{a}-2}+\frac{4}{\sqrt{a}-2}=1+\frac{4}{\sqrt{a}-2}\)

Để M nguyên thì \(\frac{4}{\sqrt{a}-2}\)nguyên

Ta có bảng sau:

\(\sqrt{a}\)-21-12-24-4
aLoại1160LoạiLoại

Vậy tại a là 0;16;2 thì M nguyên

6 tháng 10 2018

Đề bài đâu có nói căn a trừ 2 nguyên đâu :)

Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)

Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)

do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)

Đến đây xét từng TH là  ra

8 tháng 3 2020

rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)

=\(1+\frac{5}{\sqrt{x}+1}\)

Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)

Đến đây thì ez rồi

15 tháng 8 2017

Em không biết làm

15 tháng 8 2017

a. x khac 1

b. 5-2√5 / 5