Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4949}{102}\notin N\)
Vậy \(S\notin N\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{4}+1-\dfrac{1}{9}+1-\dfrac{1}{16}+...+1-\dfrac{1}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)
\(\Rightarrow S=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Từ 2-50 có 49 số nên có 49 số 1
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< 49\)
Nhận xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\) (2)
Từ (1) và (2) \(\Rightarrow48< S< 49\)
Vậy \(S\notin N\)
\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}\)
\(=1-\dfrac{3}{4}+1-\dfrac{8}{9}+1-\dfrac{15}{16}+1-\dfrac{24}{25}...+1-\dfrac{2499}{2500}\)
\(=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+...+\dfrac{1}{2500}\right)\)
Lại có: \(49-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{50.50}\right)< 49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)
Mà \(49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)
\(=49-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)
\(=49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4942}{102}\) \(\notin Z\)
Vậy B không phải là số nguyên
Bai 1: tính nhanh A) -5/9 + 3/5 - 3/9 + -2/5 B) -5/13 + (3/5 + 3/1 - 4/10) C) 5/17 - 9/15 - 2/-17 + -2/15 D) (1/9 - 9/17) + 3/6 - ( 12/17 - 1/2) + -1/9 Bài 5: tính tổng A) 1/3 + -1/4 + 1/5 + 1/-6 + -1/-7 + 1/6 + -1/5 + 1/4 + 1/3 B) 1/12 +1/2.3+1/3.4+..+1/99100 Giúp mình nhé nhanh
c: Ta có: \(-\dfrac{5}{13}-\left(\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{4}{10}\right)\)
\(=\dfrac{-5}{13}-\dfrac{3}{5}-\dfrac{3}{13}+\dfrac{2}{5}\)
\(=\dfrac{-8}{13}-\dfrac{1}{5}\)
\(=\dfrac{-53}{65}\)
d: Ta có: \(\left(\dfrac{1}{9}-\dfrac{9}{17}\right)+\dfrac{3}{6}-\left(\dfrac{12}{17}-\dfrac{1}{2}\right)+\dfrac{5}{9}\)
\(=\dfrac{1}{9}-\dfrac{9}{17}+\dfrac{1}{2}-\dfrac{12}{17}+\dfrac{1}{2}+\dfrac{5}{9}\)
\(=\dfrac{2}{3}+1-\dfrac{21}{17}\)
\(=\dfrac{22}{51}\)
\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\) - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)
( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\)
\(\dfrac{41}{16}\) - \(x\) = \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{41}{16}\) - \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{1}{16}\)
2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\))
\(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)
- \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)+ \(\dfrac{1}{15}\)) - \(x\)
- \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)
\(x\) = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{5}{6}\)
\(a)\dfrac{-11}{12}và\dfrac{17}{-18}\) \(\Leftrightarrow\dfrac{-11}{12}và\dfrac{-17}{18}\) \(\Leftrightarrow\dfrac{-33}{36}và\dfrac{-34}{36}\)
Ta thấy rằng : \(-33>-34\Rightarrow\dfrac{-33}{36}>\dfrac{-34}{36}\)
Hay : \(\dfrac{-11}{12}>\dfrac{17}{-18}\)
\(b)\dfrac{-14}{-21}và\dfrac{-60}{-72}\)
Ta có : \(\dfrac{-14}{-21}\text{=}\dfrac{-14:-7}{-21:-7}\text{=}\dfrac{2}{3}\text{=}\dfrac{4}{6}\)
\(\dfrac{-60}{-72}\text{=}\dfrac{-60:-12}{-72:-12}=\dfrac{5}{6}\)
Do đó : \(\dfrac{-14}{-21}< \dfrac{-60}{-72}\)
\(c)\dfrac{2135}{13790}và\dfrac{4}{3}\)
Xét phân số : \(\dfrac{2135}{13790}\) ta thấy rằng : \(tử< mẫu\left(2135< 13790\right)\)
\(\Rightarrow\dfrac{2135}{13790}< 1\)
Xét phân số : \(\dfrac{4}{3}có\) : \(tử>mẫu\left(4>3\right)\)
\(\Rightarrow\dfrac{4}{3}>1\)
Do đó : \(\dfrac{2135}{13790}< \dfrac{4}{3}\)
\(d)\dfrac{2022}{2021}và\dfrac{10}{9}\)
Ta thấy rằng : \(\dfrac{2022}{2021}-\dfrac{1}{2021}\text{=}1\)
\(\dfrac{10}{9}-\dfrac{1}{9}\text{=}1\)
Mà : \(\dfrac{1}{9}>\dfrac{1}{2021}\)
\(\Rightarrow\dfrac{2022}{2021}< \dfrac{10}{9}\)
\(e)\dfrac{35}{36}và\dfrac{16}{17}\)
Ta có : \(\dfrac{35}{36}+\dfrac{1}{36}\text{=}1\)
\(\dfrac{16}{17}+\dfrac{1}{17}\text{=}1\)
Mà : \(\dfrac{1}{36}< \dfrac{1}{17}\)
\(\Rightarrow\dfrac{35}{36}>\dfrac{16}{17}\)
\(f)-1,3< -1,2\)
a) Ta có:
\(-\dfrac{11}{12}=\dfrac{1}{12}-1\)
\(-\dfrac{17}{18}=\dfrac{1}{18}-1\)
Mà: \(\dfrac{1}{12}>\dfrac{1}{18}\)
Hay: \(\dfrac{1}{12}-1>\dfrac{1}{18}-1\Rightarrow-\dfrac{11}{12}>-\dfrac{17}{18}\)
b) Ta có:
\(\dfrac{-14}{-21}=\dfrac{2}{3}=\dfrac{4}{6}\)
\(\dfrac{-60}{-72}=\dfrac{5}{6}\)
Mà: \(5>4\Rightarrow\dfrac{-60}{-72}>\dfrac{-14}{-21}\)
c) Ta có:
\(\dfrac{2135}{13790}=\dfrac{61}{394}< 1\) (tử nhỏ hơn mẫu)
\(\dfrac{4}{3}>1\) (tử lớn hơn mẫu)
Ta có: \(\dfrac{61}{394}< \dfrac{4}{3}\Rightarrow\dfrac{2135}{13790}< \dfrac{4}{3}\)
d) Ta có:
\(\dfrac{2022}{2021}=\dfrac{1}{2021}+1\)
\(\dfrac{10}{9}=\dfrac{1}{9}+1\)
Ta thấy: \(\dfrac{1}{2021}< \dfrac{1}{9}\Rightarrow\dfrac{1}{2021}+1< \dfrac{1}{9}+1\)
Hay \(\dfrac{2022}{2021}< \dfrac{10}{9}\)
e) Ta có:
\(\dfrac{35}{36}=1-\dfrac{1}{36}\)
\(\dfrac{16}{17}=1-\dfrac{1}{17}\)
Ta có: \(\dfrac{1}{36}< \dfrac{1}{17}\Rightarrow1-\dfrac{1}{36}>1-\dfrac{1}{17}\)
Hay \(\dfrac{35}{36}>\dfrac{16}{17}\)
f) Ta có: \(1,3>1,2\)
\(\Rightarrow-1,3< -1,2\)
\(\dfrac{1}{2}-\left(\dfrac{-16}{7}\right)+\dfrac{4}{5}-\left(\dfrac{-4}{9}\right)+\dfrac{11}{45}+\dfrac{19}{34}+\dfrac{19}{105}=\dfrac{3836}{765}\approx5\)