K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

5B:

a: Xét ΔABC và ΔEBF có

BA=BE

\(\widehat{ABC}=\widehat{EBF}\)

BC=BF

Do đó: ΔABC=ΔEBF

b: ΔABC=ΔEBF

=>\(\widehat{BAC}=\widehat{BEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//EF

Xét tứ giác ACEF có

B là trung điểm chung của AE và CF

Do đó: ACEF là hình bình hành

=>AF//CE
c: Xét tứ giác AMEN có

AM//EN

AM=EN

Do đó: AMEN là hình bình hành

=>AE cắt MN tại trung điểm của mỗi đường

mà B là trung điểm của AE

nên B là trung điểm của MN

=>M,B,N thẳng hàng

Bài 3:

a: Đặt \(\widehat{B}=b;\widehat{C}=c\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(b+c+80^0=180^0\)

=>\(b+c=100^0\)

mà b-c=20

nên \(\left\{{}\begin{matrix}b=\dfrac{100+20}{2}=60\\c=60-20=40\end{matrix}\right.\)

Vậy: \(\widehat{B}=60^0;\widehat{C}=40^0\)

b: AD là phân giác của \(\widehat{BAC}\)

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot80^0=40^0\)

Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{C}\)

=>\(\widehat{ADB}=40^0+40^0=80^0\)

4:

a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{BAC}+20^0+40^0=180^0\)

=>\(\widehat{BAC}=120^0\)

=>ΔABC là tam giác tù

b: AD nằm giữa AB và AC

=>\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}=120^0\)

mà \(\widehat{CAD}=2\cdot\widehat{BAD}\)

nên \(\widehat{CAD}=\dfrac{2}{3}\cdot120^0=80^0\)

=>\(\widehat{BAD}=\dfrac{1}{2}\cdot80^0=40^0\)

Xét ΔABD có \(\widehat{ADC}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{BAD}+\widehat{B}=40^0+20^0=60^0\)

Bài 11:

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{20}}\)

=>\(3\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{19}}\)

=>\(3\cdot A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{19}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{19}}-\dfrac{1}{3^{20}}\)

=>\(2A=1-\dfrac{1}{3^{20}}=\dfrac{3^{20}-1}{3^{20}}\)

=>\(A=\dfrac{3^{20}-1}{2\cdot3^{20}}\)

Bài 6:

a: ĐKXĐ: x>=-2

\(\sqrt{x+2}>=0\forall x\) thỏa mãn ĐKXĐ

=>\(\sqrt{x+2}+2>=2\forall x\) thỏa mãn ĐKXĐ
=>\(A>=2\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x+2=0

=>x=-2

Vậy: \(A_{min}=2\) khi x=-2

b: ĐKXĐ: x>=-5

\(\sqrt{x+5}>=0\forall x\) thỏa mãn ĐKXĐ

=>\(5\sqrt{x+5}>=0\forall x\)thỏa mãn ĐKXĐ 

=>\(5\sqrt{x+5}-\dfrac{3}{5}>=-\dfrac{3}{5}\forall x\) thỏa mãn ĐKXĐ

=>\(B>=-\dfrac{3}{5}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x+5=0

=>x=-5

vậy: \(B_{min}=-\dfrac{3}{5}\) khi x=-5

Bài 4:

a: Ta có: \(-\left|x+1.1\right|\le0\forall x\)

\(\Leftrightarrow-\left|x+1.1\right|+1.5\le1.5\forall x\)

Dấu '=' xảy ra khi x=-1,1

b: Ta có: \(-4\left|x-2\right|\le0\forall x\)

\(\Leftrightarrow-4\left|x-2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x=2

4 tháng 9 2021

cảm ơn bn

 

Bài 4:

a: \(4x=3y\)

=>\(\dfrac{x}{3}=\dfrac{y}{4}=k\)

=>x=3k; y=4k

\(\left(x-y\right)^2+\left(x+y\right)^2=50\)

=>\(\left(3k-4k\right)^2+\left(3k+4k\right)^2=50\)

=>\(\left(-k\right)^2+\left(7k\right)^2=50\)

=>\(50k^2=50\)

=>\(k^2=1\)

TH1: k=1

=>\(x=3\cdot1=3;y=4\cdot1=4\)

TH2: k=-1

=>\(x=3\cdot\left(-1\right)=-3;y=4\cdot\left(-1\right)=-4\)

b: 3x=2y

=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)

=>x=2k; y=3k

\(\left(x+y\right)^3-\left(x-y\right)^3=126\)

=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)

=>\(\left(5k\right)^3-\left(-k\right)^3=126\)

=>\(126k^3=126\)

=>\(k^3=1\)

=>k=1

=>\(x=2\cdot1=2;y=3\cdot1=3\)

bài 3:

a: \(\dfrac{x}{2}=\dfrac{y}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{2}\)

=>\(\dfrac{y}{15}=\dfrac{z}{10}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

mà 2x+3y-4z=34

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x+3y-4z}{2\cdot6+3\cdot15-4\cdot10}=\dfrac{34}{12+45-40}=2\)

=>\(x=2\cdot6=12;y=2\cdot15=30;z=2\cdot10=20\)

b: 2x=3y

=>\(\dfrac{x}{3}=\dfrac{y}{2}\)

=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(3\right)\)

5y=7z

=>\(\dfrac{y}{7}=\dfrac{z}{5}\)

=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{63-98+50}=\dfrac{30}{113-98}=2\)

=>\(x=2\cdot21=42;y=2\cdot14=28;z=2\cdot10=20\)

Bài 2:

a: Xét ΔABD có AD<AB+BD(BĐT tam giác)

b: Xét ΔACD có AD<AC+CD(BĐT tam giác)

ta có: AD<AB+BD

AD<AC+CD

Do đó: AD+AD<AB+BD+AC+CD

=>2AD<AB+AC+BC

c: \(2AD< AB+AC+BC\)

=>\(AD< \dfrac{1}{2}\left(AB+AC+BC\right)\)

=>\(AD< \dfrac{1}{2}\cdot C_{ABC}\)

Bài 11:

a: ΔMDN vuông tại D

=>MN là cạnh huyền

=>MN là cạnh lớn nhất trong ΔMDN

=>MN>MD

b: Ta có: ΔMEN vuông tại E

=>MN là cạnh huyền của ΔMEN

=>MN là cạnh lớn nhất trong ΔMEN

=>MN>NE

mà MN>MD

nên MN+MN>MD+NE

=>2MN>MD+NE

18 tháng 11 2021

C bn nhé

8 tháng 7 2019

Nhân cả hai vế với 12 (đỡ mất công quy đồng kiểu kia), ta tìm x sao cho:

\(10x-8=3x+8\Leftrightarrow7x=16\Leftrightarrow x=\frac{16}{7}\)

Vậy...