Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x^3-8x\left(x+2\right)=6\\ \Leftrightarrow\left(x^2+3x+2\right).\left(x+3\right)-x^3-8x^2-16x=6\\ \Leftrightarrow x^3+6x^2+11x+6-x^3-8x^2-16x-6=0\\ \Leftrightarrow-2x^2-5x=0\\ \Leftrightarrow x.\left(-2x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\-2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
\(=\left|x-1\right|+\left|2-x\right|+2016\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)
Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)
b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)
Ta lại có: \(\left|x-2\right|\ge0\) (2)
Từ (1)(2) suy ra: \(B\ge2\)
Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)
a) Ta có:
\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)
hay \(A\ge\left|1\right|+2016=1+2016=2017\)
=> \(A\ge2017\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.
b) Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)
\(\Rightarrow B\ge\left|x\right|\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)
Để B nhỏ nhất
=> |x| phải nhỏ nhất (2)
Từ (1) và (2)
=> x=1
khi đó:
B=|x|=|1|=1
Vậy với x=1 thì B đạt GTNN và B=1.
\(\Leftrightarrow x^2-6x+9-4x^2-4x-1-2\left(x^2+x-2\right)=3\left(x-3\right)-\left(4x^2+8x-x-2\right)\)
\(\Leftrightarrow-3x^2-10x+8-2x^2-2x+4=3\left(x-3\right)-4x^2-7x+2\)
\(\Leftrightarrow-5x^2-12x+12=3x-9-4x^2-7x+2\)
\(\Leftrightarrow-5x^2-12x+12=-4x^2-4x-7\)
\(\Leftrightarrow-4x^2-4x-7+5x^2+12x-12=0\)
\(\Leftrightarrow x^2+8x-19=0\)
\(\text{Δ}=8^2-4\cdot1\cdot\left(-19\right)=76+64=140\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-8-2\sqrt{35}}{2}=-4-\sqrt{35}\\x_2=-4+\sqrt{35}\end{matrix}\right.\)
Trả lời:
\(B=\left(x-3\right).\left(x+3\right).\left(x^2+9\right)-\left(x^2+2\right).\left(x^2-2\right)\)
\(B=\left(x^2-9\right).\left(x^2+9\right)-\left(x^4-4\right)\)
\(B=\left(x^4-81\right)-\left(x^4-4\right)\)
\(B=x^4-81-x^4+4\)
\(B=-77\)
\(\Leftrightarrow2016x^2+\left(1+2+3+...+2016\right)=2234763.\)
Biểu thức trong ngoặc đơn là tổng các số hạng của 1 cấp số cộng. Bạn tự làm nốt nhé