K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7-10}{7-3}=\dfrac{4}{4}=1\)

b: \(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

21 tháng 1 2022

a) x = 49(TMĐK) thì A= 1

b)bạn tách x-25 thành \(\sqrt{x}+5\) và \(\sqrt{x}-5\) là được

c)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Đề thiếu. Bạn coi lại đề.

19 tháng 8 2023

Giúp em 2 bài em mới hỏi với ạ. Em cảm ơn ạ

 

 

 

9 tháng 12 2021

08:43 :vvvv

9 tháng 12 2021

BTVN :))

b) Để P nguyên thì \(\sqrt{x}+5⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}+15⋮3\sqrt{x}-1\)

\(\Leftrightarrow16⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;2;4;8;16\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;2;3;5;9;17\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;3;9\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AK^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AK là đường cao ứng với cạnh huyền BC, ta được:

\(KB\cdot KC=AK^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)

b: Xét tứ giác AFKE có 

\(\widehat{AFK}=\widehat{AEK}=\widehat{EAF}=90^0\)

Do đó: AFKE là hình chữ nhật

Suy ra: \(AK=FE\left(3\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AK^2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\) suy ra \(AE\cdot AB=FE^2\)

c: Ta có: \(AF\cdot AC+AE\cdot AB+KB\cdot KC\)

\(=AK^2+AK^2+AK^2\)

\(=3\cdot AK^2=3\cdot FE^2\)

20 tháng 11 2021

\(a,C=\dfrac{81-1}{4\cdot9}=\dfrac{80}{36}=\dfrac{20}{9}\\ b,D=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ D=\dfrac{2x+2\sqrt{x}+1}{x-1}\\ c,CD=\dfrac{x-1}{4\sqrt{x}}\cdot\dfrac{2x+2\sqrt{x}+1}{x-1}=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}=\dfrac{13}{8}\\ \Leftrightarrow52\sqrt{x}=16x+16\sqrt{x}+8\\ \Leftrightarrow16x-36\sqrt{x}+8=0\\ \Leftrightarrow4x-9\sqrt{x}+2=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{16}\left(tm\right)\end{matrix}\right.\)

\(d,N=CD=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}=\dfrac{\sqrt{x}}{2}+\dfrac{1}{2}+\dfrac{1}{4\sqrt{x}}\\ \Leftrightarrow N\ge2\sqrt{\dfrac{\sqrt{x}}{2}\cdot\dfrac{1}{4\sqrt{x}}}+\dfrac{1}{2}=2\sqrt{\dfrac{1}{8}}+\dfrac{1}{2}=\dfrac{\sqrt{2}+1}{2}\)

Dấu \("="\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

Vậy \(N_{min}=\dfrac{\sqrt{2}+1}{2}\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AK^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có KA là đường cao ứng với cạnh huyền BC, ta được:

\(KB\cdot KC=AK^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)

b: Xét tứ giác AEKF có 

\(\widehat{FAE}=\widehat{AFK}=\widehat{AEK}=90^0\)

Do đó: AEKF là hình chữ nhật

Suy ra: \(AK=EF\left(3\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AK^2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\) suy ra \(EF^2=AE\cdot AB\)

c: Ta có: \(AE\cdot AB+AF\cdot AC+KB\cdot KC\)

\(=AH^2+AH^2+AH^2\)

\(=3\cdot EF^2\)

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB