K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Số hữu tỷ là: 1,5

Số vop tỷ là 

\(\frac{\sqrt{3}+\sqrt{2}}{2}\)

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

1 tháng 9 2023

Phương trình tương đương: \(5a-2a\sqrt{5}+b\sqrt{5}-2b=1\)

\(\Rightarrow\sqrt{5}\left(b-2a\right)+\left(5a-2b-1\right)=0\).

\(\Leftrightarrow\left\{{}\begin{matrix}b-2a=0\\5a-2b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) (thỏa mãn).

Vậy: \(\left(a;b\right)=\left(1;2\right)\)

a/ Có. Ví dụ: (3 - √3) và (2 + √3) là hai số vô tỉ dương, nhưng (3 - √3) + (2 + √3) = 5 là một số hữu tỉ.

6 tháng 7 2015

Ta có: \(\sqrt{2}\) là 1 số vô tỉ.

=> 1+\(\sqrt{2}\) là một số vô tỉ.

=> \(\sqrt{1+\sqrt{2}}\) cũng là 1 số vô tỉ

20 tháng 1 2022

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

20 tháng 1 2022

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

11 tháng 6 2023

Câu 1:

Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)

Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\) 

và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)

Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:

\(S_{3k+1}=1\)\(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\) 

Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).

 - Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số

 - Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số

 - Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số

Như thế, tổng S có thể được viết lại thành 

\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)

\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)

Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.

 

12 tháng 6 2023

Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)

\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)

\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2) 

Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)

\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)

\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)

\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)

Khi đó M = x3 + y3 = 0

N = x2 + y2 = 2y2

13 tháng 1 2019

\(x^3+y^3=2xy\)

Bình phương 2 vế ta được:

  \(\left(x^3+y^3\right)^2=4x^2y^2\)

<=>  \(x^6+y^6+2x^3y^3=4x^2y^2\)

<=>  \(x^6+y^6-2x^3y^3=4x^2y^2-4x^3y^3\)

<=>  \(\left(x^3-y^3\right)^2=4x^2y^2\left(1-xy\right)\)

<=>  \(1-xy=\frac{\left(x^3-y^3\right)^2}{4x^2y^2}=\left(\frac{x^3-y^3}{2xy}\right)^2\)

=>  \(\sqrt{1-xy}=\left|\frac{x^3-y^3}{2xy}\right|\) là 1 số hữu tỉ

=>  đpcm