Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
Đặt x2-3x+4=a
=>\(\frac{1}{a-1}+\frac{2}{a}=\frac{6}{a+1}\)
ĐKXĐ:a khác 1 ; -1 ;0
=>a2+a+2a2-2=6a2-6a
<=>6a2-3a2-a-6a+2=0
<=>3a2-7a+2=0
<=>(3a-1)(a-2)=0
<=>a=1/3 hoặc a=2
*)a=1/3
=>x2-3x+4=1/3
<=>x2-3x+11/3=0
<=>(x-1,5)2+17/12=0(vô lí)
*)a=2
=>x2-3x+4=2
<=>x2-3x+2=0
<=>(x-1)(x-2)=0
<=>x=1 hoặc x=2
Vậy x={1;2}
\(1320-3x^2=74x\)
\(\Leftrightarrow-3x^2-74x+1320=0\)
\(\Leftrightarrow3x^2+74x-1320=0\)
\(\Leftrightarrow3x^2-36x+110x-1320=0\)
\(\Leftrightarrow3x\left(x-12\right)+110\left(x-12\right)=0\)
\(\Leftrightarrow\left(3x+110\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{110}{3}\\x=12\end{matrix}\right.\)
\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)-3x^2=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+3\right)\left(x+8\right)\right]-3x^2=0\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)-3x^2=0\)
Đặt \(x^2+11x+24=a\)
\(\Rightarrow pt:a\left(a+3x\right)-3x^2=0\)
\(\Leftrightarrow a^2+3ax-3x^2=0\)
\(\Leftrightarrow4a^2+12ax-12x^2=0\)
\(\Leftrightarrow\left(2a+3x\right)^2=21x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+3x=x\sqrt{21}\\2a+3x=-x\sqrt{21}\end{cases}}\)
*Với \(2a+3x=x\sqrt{21}\)
\(\Leftrightarrow2x^2+22x+48+3x-x\sqrt{21}=0\)
\(\Leftrightarrow2x^2+x\left(25-\sqrt{21}\right)+48=0\)
Có \(\Delta=262-50\sqrt{21}>0\)
Nên pt có nghiệm \(x=\frac{\sqrt{21}-25\pm\sqrt{262-50\sqrt{21}}}{4}\)
Trường hợp còn lại làm tương tự
(3x-2)2=(2-3x)2
=>3x-2=2-3x
3x+3x=2-2( quy tắc chuyển vế)
2.3x =0
6x =0
=>x 0
(3x-2)2=(2-3x)2
=>3x-2=2-3x
3x+3x=2-2( quy tắc chuyển vế)
2.3x =0
6x =0
=>x 0................................................