K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\frac{98}{303}\)

\(A=\frac{49}{303}\)

25 tháng 12 2016

A= \(\frac{1}{15}\)\(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)

A= \(\frac{1}{3.5}\)\(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)

2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)

2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)\(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)

2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)

2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)

2.A= \(\frac{98}{303}\)

A  = \(\frac{98}{303}\) : 2

A  = \(\frac{49}{303}\)

Vay A=\(\frac{49}{303}\)

13 tháng 1 2016

ket qua la ;49/303

tick nha

13 tháng 1 2016

Cảm ơn mọi người nhiều!

21 tháng 1 2016

làm rồi

2/5

tick nha

22 tháng 1 2016

= 1/(3x5) + 1/(5x7) + 1/(7x9) +.....+ 1/(99x101)                                                                                                 =( 1/3 -1/5 + 1/5 -1/7 +1/7 - 1/9 +....+ 1/99 -1/101 ) :2                                                                                        = (1/3 -1/101) : 2                                                                                                                                           = 98/303 : 2                                                                                                                                                   = 49/303

21 tháng 1 2016

98/303 tích nha mình giải cho

23 tháng 8 2023

\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\dfrac{1}{3}+\dfrac{1}{25}\)

\(=\dfrac{28}{75}\)

24 tháng 8 2023

cám ơi bạn

 

A = 1/15 + 1/35 + 1/63 + 1/99 + ....... + 1/9999

A = 1/3 x 5 + 1/5 x 7 + 1/9 x7 + .........+ 1/99 x101

A = 1/2 x ( 1/3 -1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...... + 1/99 - 1/101

A = 1/2 x ( 1/3 - 1/99 )

A = 1/2 x 98/303

A = 49/303

20 tháng 12 2016

A = 1/3.5 +1/5.7 + 1/7.9 + 1/9.11 + ... + 1/99. 101

= 1/2.(2/3.5+ 2/5.7 + 2/7.9 + ...+2/99.101)

= 1/2.(1/3 - 1/5 - 1/5 - 1/7 - 1/7 - 1/9  + .... +1/99 - 1/101

=1/2.(1/3 - 1/101)

=1/2 .98//303

=49/303

Dấu . là nhân đó nha bạn 

30 tháng 3 2019

\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)

Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

Thay A vào biểu thức

\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)

\(\Rightarrow x=\frac{22}{15}\)

P/s: Có thể tính sai :(

30 tháng 3 2019

\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)

Trước tiên mình tính dãy có dấu ngoặc đã

Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)

\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)

\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)

Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :

\(\frac{5}{11}\times x=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)

\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)

\(\Leftrightarrow x=\frac{22}{15}\)

Vậy \(x=\frac{22}{15}\)

16 tháng 7 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

   \(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

   \(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}\left(\frac{1}{99}-\frac{1}{101}\right)\)

   \(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

   \(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

   \(=\frac{1}{2}.\frac{98}{303}\)

   \(=\frac{49}{303}\)

Dấu chấm(.) ở cấp hai là dấu nhân (x)

49/303

Tick cho mình nha bạn