K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

21 tháng 11 2017

Theo đề ta có:

\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}\)\(a+b-2c=70\)

Áp dụng tính chất của dãy tỉ số bằng nhay ta có:

\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}=\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{2c}{2.7}=\dfrac{a+b-2c}{2+5-14}=\dfrac{70}{-7}=-10\)

\(\dfrac{a}{2}=-10\Rightarrow a=\left(-10\right).2=-20\)

\(\dfrac{b}{5}=-10\Rightarrow b=\left(-10\right).5=-50\)

\(\dfrac{c}{7}=-10\Rightarrow c=\left(-10\right).7=-70\)

Vậy \(a=-20;b=-50;c=-70\)

19 tháng 1 2022

a) Ta có:    \(\widehat{AMD}=\widehat{AMC}+\widehat{CMD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(1\right)\)

Lại có:       \(\widehat{CMB}=\widehat{BMD}+\widehat{CAD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\):   ⇒    \(\widehat{AMD}=\widehat{CMB}\)

Xét △ AMD và △ CMB có:

   CH = AM ( △ AMC đều )

   \(\widehat{AMD}=\widehat{CMB}\)    ( cmt )

   MB = MD ( △ BMD đều )

⇒ △ AMD = △ CMB     ( c - g - c )

Do đó:  AD = CB  ( 2 cạnh tương ứng )

b) Ta có:   \(CK=\dfrac{BC}{2}\)   ( K là trung điểm CB )

    Ta có:   \(AI=\dfrac{AD}{2}\)    ( I là trung điểm AD )

Mà    BC = AD ( cmt )          ⇒    CK = AI
Xét △ AMI và △ CMK có:

   CM = AM ( △ AMC đều )

   \(\widehat{IAM}=\widehat{KCM}\)  ( vì △ AMD = △ CMB )

   AI = CK ( cmt )

⇒ △ AMI = △ CMK   ( c - g - c )

⇒ MK = MI

⇒ △ IMK cân tại M

   

 

7 tháng 8 2018

khongcamxuc_123 đó nha bn bn phải giữ lời hứa đấy nha 

~~~~ hok tốt ~~~~!!!!

7 tháng 8 2018

k ngày 3 lần được ko đó hứa nha !

13 tháng 6 2019

Trả lời

10%=10/100=1/10=0,1.

Uk vậy cố gắng kiếm điểm lại nhé !

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

\(\eqalign{

& \widehat {I{\rm{D}}B} = \widehat {IEB} = 90^\circ \cr

& \widehat {DBI} = \widehat {EBI}\left( {gt} \right) \cr} \)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)

Quảng cáo

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\eqalign{

& \widehat {IEC} = \widehat {IFC} = 90^\circ \cr

& \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \cr} \)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

ˆIDB=ˆIEB=90∘ˆDBI=ˆEBI(gt)IDB^=IEB^=90∘DBI^=EBI^(gt)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

ˆIEC=ˆIFC=90∘ˆECI=ˆFCI(gt)IEC^=IFC^=90∘ECI^=FCI^(gt)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA



Read more: https://sachbaitap.com/cau-100-trang-151-sach-bai-tap-sbt-toan-lop-7-tap-1-c7a10140.html#ixzz6DFwdbF2W