Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc FC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
d: AD=DE
DE<DC
=>AD<DC
e: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
Xét tam giác ABD và tam giác EBD có
góc BAD = góc BED = 90 độ
BD chung
góc ABD = góc EBD (BD là tia phân giác góc ABC)
=> tam giác ABD = tam giác EBD (ch-gn)
b) Gọi H là giao điểm của BD và AE
Ta có tam giác ABD = tam giác EBD
=> AB = BE
Xét tam giác ABH và tam giác EBH có
AB = BE
góc ABH = góc EBH
BH chung
=> tam giác ABH = tam giác EBH (c.g.c)
=> góc AHB = góc EHB (2 góc tương ứng) và AH = HE
AH = HE => H là trung điểm của AE
Góc AHB = góc AHE mà AHB + AHE = 180 độ
=> góc AHB = góc EHB = 90 độ => BH vuông góc với AE hay BD vuông góc với AE
Ta có BD vuông góc với AE tại H, H là trung điểm của AE => BD là đường trung trực của AE
chúc e học tốt
xét\(\Delta ABD\)và\(\Delta EBD\)có
BD cạnh chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{B}\))
\(\widehat{A}=\widehat{BED}=90^0\)
=>\(\Delta ABD=\Delta EBD\)(ch-gn)
b.vì\(\Delta ABE\)cân tại B (BA=BE(\(\Delta ABD=\Delta EBD\))(1)
mà BD là đường phân giác xuất phát từ đỉnh B(2)
từ(1) và(2)=>BD đồng thời là đường trung trực ứng với cạnh AE
a) Xét 2 tam giác vuông ABD & EBD có:
BD chung
ABD = EBD
=>tam ABD = EBD (cạnh huyền - góc nhọn)
b) tam giác ABD = EBD => BA = BE ( 2 cạnh tương ứng )
=> tam giác ABE cân
Mà trong tam giác cân , đường trung phân giác vừa là đường trung trực => BD trung trực AE
a)
và có:
BA = BE (gt)
(BD là tia phân giác góc B)
BD là cạnh chung
(c.g.c)
(hai góc tương ứng)
mà
DE BE
b) và có:
BA = BE (gt)