Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 0 < a < \(\dfrac{\pi}{2}\) tức a là góc nhọn
⇒ sinA = \(\sqrt{1-\dfrac{16}{13^2}}=\dfrac{3\sqrt{17}}{13}\)
tan = sin/cos
cot = cos/sin (cái này tự tính nhá)
b, \(\dfrac{3\pi}{2}< a< 2\pi\) ⇔ \(270^0< a< 360^0\)
⇒ sin(a) < 0
cos (a) > 0
cot = - 3 => tan = \(\dfrac{-1}{3}\)
\(\dfrac{sin}{cos}=\dfrac{-1}{3}\), mà sin^2 + cos^2 = 1
sin < 0; cos >0
⇒ \(\left\{{}\begin{matrix}sin=-\dfrac{\sqrt{10}}{10}\\cos=\dfrac{3\sqrt{10}}{10}\end{matrix}\right.\)
a) \(d\left(A;\Delta\right)=\dfrac{\left|4.1-3.3+2\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{3}{5}\)
b) \(\overrightarrow{AB}=\left(-3;-2\right)\) là VTCP của đường thẳng d
PT tham số của d: \(\left\{{}\begin{matrix}x=1-3t\\y=3-2t\end{matrix}\right.\left(t\in R\right)\)
c) Đường tròn (C) có bán kính \(R=AB=\sqrt{\left(1+2\right)^2+\left(3-1\right)^2}=\sqrt{13}\)
PT đường tròn (C): \(\left(x-1\right)^2+\left(y-3\right)^2=13\)
a: Tọa độ điểm G là:
\(\left\{{}\begin{matrix}x_G=\dfrac{1-4+0}{3}=-1\\y_G=\dfrac{3-1-2}{3}=0\end{matrix}\right.\)
\(\overrightarrow{AB}=\left(-5;-4\right)\)
\(\overrightarrow{AC}=\left(-1;-5\right)\)
Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên ba điểm A,B,C không thẳng hàng
hay ΔABC nhọn
3.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\)
Do đó đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtpt
4.
\(\overrightarrow{AB}=\left(-a;b\right)\)
\(\Rightarrow\) Đường thẳng AB nhận (b;a) là 1 vtpt
\(\dfrac{tanx-tany}{coty-cotx}=\dfrac{tanx-tany}{\dfrac{1}{tany}-\dfrac{1}{tanx}}=\dfrac{tanx-tany}{\left(\dfrac{tanx-tany}{tanx.tany}\right)}=\dfrac{tanx.tany\left(tanx-tany\right)}{tanx-tany}=tanx.tany\)