K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Xét tam giác $ABM$ và $ACM$ có:

$\widehat{AMB}=\widehat{AMC}=90^0$

$AB=AC$ (do $ABC$ cân tại A)

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (ch-cgv)

b) Xét tam giác $ANP$ và $CNM$ có:

$AN=CN$ (do $N$ là trung điểm $AC$)

$NP=NM$ 

$\widehat{ANP}=\widehat{CNM}$ (đối đỉnh)

$\Rightarrow \triangle ANP=\triangle CNM$ (c.g.c)

$\Rightarrow \widehat{APN}=\widehat{CMN}$

Mà 2 góc này ở vị trí so le trong nên $AP\parallel CM$. Mà $AM\perp CM$ nên $AP\perp AM$ (đpcm)

c) 

Từ tam giác bằng nhau phần b suy ra $AP=CM(1)$

Xét tam giác $CMQ$ và $CRQ$ có:

$\widehat{CQM}=\widehat{CQR}=90^0$

$QR=QM$

$QC$ chung

$\Rightarrow \triangle CMQ=\triangle CRQ$ (c.g.c)

$\Rightarrow CM=CR(2)$

Từ $(1);(2)\Rightarrow CR=PA$ (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Hình vẽ:

undefined

7 tháng 12 2021

Câu 3:

\(a,\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{a-b}{2-5}=\dfrac{9}{-3}=-3\\ \Rightarrow\left\{{}\begin{matrix}a=-6\\b=-15\end{matrix}\right.\\ b,\dfrac{a}{3}=\dfrac{b}{6}=\dfrac{a-b}{3-6}=\dfrac{12}{-3}=-4\\ \Rightarrow\left\{{}\begin{matrix}a=-12\\b=-24\end{matrix}\right.\\ c,\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{a-2b}{4-10}=\dfrac{-30}{-6}=5\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=25\end{matrix}\right.\)

3 tháng 12 2021

Đây nhé bạn
undefined

11 tháng 5 2022

a)\(-\dfrac{2}{3}x^6y^3\)ư

hệ số -2/3 

biến \(x^6y^3\)

b) \(\dfrac{5}{8}x^4y^2\)

hệ số 5/8

biến\(x^4y^2\)

c)\(2x^7y^3\)

hệ số : 2

 biến \(x^7y^3\)

4 tháng 8 2021

1.C

2.D

3.C

4.C

5.C

6.C

7.D

8.D

9.C

10.D

11.A

12.A

10 tháng 7 2017

a) \(\frac{x+2015}{5}+\frac{x+2015}{6}=\frac{x+2015}{7}+\frac{x+2015}{8}\)

\(\frac{x+2015}{5}+\frac{x+2015}{6}-\frac{x+2015}{7}-\frac{x+2015}{8}=0\)

\(\left(x+2015\right).\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\)

vì \(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\ne0\)

\(\Rightarrow\)x + 2015 = 0

\(\Rightarrow\)x = -2015

b) Tương tự