K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

Câu 3:

\(a,\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{a-b}{2-5}=\dfrac{9}{-3}=-3\\ \Rightarrow\left\{{}\begin{matrix}a=-6\\b=-15\end{matrix}\right.\\ b,\dfrac{a}{3}=\dfrac{b}{6}=\dfrac{a-b}{3-6}=\dfrac{12}{-3}=-4\\ \Rightarrow\left\{{}\begin{matrix}a=-12\\b=-24\end{matrix}\right.\\ c,\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{a-2b}{4-10}=\dfrac{-30}{-6}=5\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=25\end{matrix}\right.\)

11 tháng 5 2022

a)\(-\dfrac{2}{3}x^6y^3\)ư

hệ số -2/3 

biến \(x^6y^3\)

b) \(\dfrac{5}{8}x^4y^2\)

hệ số 5/8

biến\(x^4y^2\)

c)\(2x^7y^3\)

hệ số : 2

 biến \(x^7y^3\)

DT
13 tháng 12 2023

Đặt x/6 = y/3 = k

=> x=6k và y = 3k

Ta có : xy = 3

=> 18k^2 = 3

=> k^2 = 1/6

=> k = ±√1/6 = ±√6 / 6

Vậy (x;y) = (√6;√6 /2);(-√6;-√6 /2)

10 tháng 8 2023

\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)

\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)

7\(x\) < 36 < 63\(x\) + 7

\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)

\(\dfrac{29}{63}\)<  \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}

⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\)\(\dfrac{2}{9}\)\(\dfrac{3}{9}\)\(\dfrac{4}{9}\);\(\dfrac{5}{9}\)

 

 

9 tháng 8 2023

\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)

=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)

\(\Rightarrow7x< 36< 7x+7\)

\(\Rightarrow x< \dfrac{36}{7}< x+1\)

\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)

\(\Rightarrow x=5\)

 

9 tháng 8 2023

tik cho mình nhé

7 tháng 8 2023

\(P=\left(x+5\right)\left(ax^2+bx+25\right)\) (Sửa =25 thành +25)

\(Q=x^3+125=x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\) (Sửa =25 thành +25)

Để \(P=Q\Rightarrow\left(ax^2+bx+25\right)=\left(x^2-5x+25\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-5\end{matrix}\right.\)

21 tháng 9 2020

\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)

Bạn tự làm nốt