Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
\(\left|x-1,7\right|=2,3\\ \Rightarrow\left[{}\begin{matrix}x-1,7=2.3\\x-1.7=-2,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy....
b, Ta có :
\(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy...
\(\left|x+1\right|và\left|x+2\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)+\left(x+2\right)=3\\\left(x+1\right)+\left(x+2\right)=-3\end{cases}}\)
\(\orbr{\begin{cases}2x+3=3\\2x+3=-3\end{cases}}\)
\(\orbr{\begin{cases}2x=0\\2x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|=3\)
Xét \(x+1\ge0;x+2\ge0\Leftrightarrow x\ge-1;x\ge-2\Rightarrow x\ge-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\Rightarrow x=0\)(TM)
Xét \(x+1\le0;x+2\ge0\Leftrightarrow-2\le x\le-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow-x-1+x+2=3\Leftrightarrow1=3\) (loại)
Xét \(x+1\le0;x+2\le0\Leftrightarrow x\le-1;x\le-2\Leftrightarrow x\le-2\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=-x-2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=-x-1-x-2=-2x-3=3\Rightarrow x=-3\)(TM)
Vậy \(x=\left\{-3;0\right\}\)
\(\left(\frac{-2}{3x}-\frac{3}{5}\right)\left(\frac{3}{-2}-\frac{10}{3}\right)\)
\(=\left[-\left(\frac{2}{3x}+\frac{3}{5}\right)\right]\left[-\left(\frac{3}{2}+\frac{10}{3}\right)\right]\)
\(=\left(\frac{2}{3x}+\frac{3}{5}\right)\left(\frac{3}{2}+\frac{10}{3}\right)\)
\(=\left(\frac{10}{15x}+\frac{9x}{15x}\right)\left(\frac{9}{6}+\frac{20}{6}\right)\)
\(=\frac{10+9x}{15x}.\frac{9+20}{6}\)
\(=\frac{29.\left(10+9x\right)}{90}\)
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{3x+y}{15+2}=\dfrac{1}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}.5=\dfrac{5}{17}\\y=\dfrac{1}{17}.2=\dfrac{2}{17}\end{matrix}\right.\)
pls mik đang rất gấp
2xy - 3x + 5y=4
2x(y-1) + 5y = 4
2x(y-1) + 5y - 5 = 4 - 5
2x(y-1) - 1(y-1) = -1
(2x-1)(y-1) = -1
Ta thấy -1= (-1).1 => Ta có bảng sau:
Như vậy, ta có 2 trường hợp (x;y) thỏa mãn yêu cầu đề bài là ( 0;2 ) ; ( 1;0 )
Hok tốt~