Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
48.
Gọi phương trình (d) có dạng: \(y=kx+b\)
Do (d) qua N nên: \(-2=k.\left(-1\right)+b\Rightarrow b=k-2\)
Hay pt (d) có dạng: \(y=kx+k-2\)
b.
Phương trình hoành độ giao điểm (d) và (P):
\(-x^2=kx+k-2\Leftrightarrow x^2+kx+k-2=0\) (1)
Xét (1), ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+4>0;\forall k\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi k
Hay (d) luôn cắt (P) tại 2 điểm A, B với mọi k
Do A; B thuộc (d) nên: \(\left\{{}\begin{matrix}y_1=kx_1+k-2\\y_2=kx_2+k-2\end{matrix}\right.\)
Đồng thời theo định lý Viet: \(x_1+x_2=-k\)
\(\Rightarrow S=x_1+x_2+y_1+y_2=-k+k\left(x_1+x_2\right)+2k-4=-k^2+k-4\)
\(\Rightarrow S=-\left(k-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)
Dáu "=" xảy ra khi \(k-\dfrac{1}{2}=0\Rightarrow k=\dfrac{1}{2}\)
49.
Ý đầu em tự giải
Ý 2:
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=mx-2m+4\Leftrightarrow x^2-mx+2m-4=0\) (1)
Xét (1), ta có \(\Delta=m^2-4\left(2m-4\right)=\left(m-4\right)^2\ge0;\forall m\)
Để (d) cắt (P) tại 2 điểm pb hay (1) có 2 nghiệm pb \(\Rightarrow\Delta>0\Rightarrow m\ne4\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
Đặt \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=m^2-2\left(2m-4\right)=m^2-4m+8\)
\(A=\left(m-2\right)^2+4\ge4\)
\(\Rightarrow A_{min}=4\) khi \(m-2=0\Rightarrow m=2\) (thỏa)
a) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}+1\)
b) \(P=x-\sqrt{x}+1=\left(\sqrt{x}\right)^2-2.\sqrt{x}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow P_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{4}\)
c) \(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\)
Ta có: \(\left\{{}\begin{matrix}2\sqrt{x}>0\left(x>0\right)\\x+\sqrt{x}+1>0\end{matrix}\right.\Rightarrow Q>0\)
Lại có: \(3x-5\sqrt{x}+3=3\left(\left(\sqrt{x}\right)^2-2.\sqrt{x}.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2\right)+\dfrac{11}{12}\)
\(=3\left(\sqrt{x}-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)
\(\Rightarrow3x-5\sqrt{x}+3>0\Rightarrow3x-3\sqrt{x}+3>2\sqrt{x}\Rightarrow3\left(x-\sqrt{x}+1\right)>2\sqrt{x}\)
\(\Rightarrow3>\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Q< 3\Rightarrow0< Q< 3\)
mà \(Q\in Z\Rightarrow Q\in\left\{1;2\right\}\)
Từ\(Q\) tính ta x thôi
a, \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)ĐK : \(x>0;x\ne1\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)
\(=x-\sqrt{x}\)
b, Ta có : \(x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu ''='' xảy ra khi \(x=\dfrac{1}{4}\)
Vậy GTNN P là -1/4 khi x = 1/4
c, Ta có : \(G=\dfrac{2\sqrt{x}}{P}\Rightarrow G=\dfrac{2\sqrt{x}}{x-\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
\(\sqrt{x}\) | 2 | 0 | 3 | -1 |
x | 4 | 0 ( loại ) | 9 | loại |
\(AB=\tan C\cdot AC=\tan40^0\cdot100\approx84\left(m\right)\)
a: \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}-\dfrac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{3}-\sqrt{5}-2\left(\sqrt{5}+\sqrt{3}\right)+3\left(\sqrt{5}-1\right)\)
\(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\sqrt{5}-3\)
=-3
b: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\left|\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\right|\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left|\sqrt{y}-1\right|}{\left(x-1\right)^2}=\pm\dfrac{1}{x-1}\)
a, \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}+\dfrac{4\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{3}-\sqrt{5}+\dfrac{4\sqrt{3}+4\sqrt{5}}{3-5}+3\left|\sqrt{5}-1\right|\)
\(=2\sqrt{3}-\sqrt{5}-2\sqrt{3}-2\sqrt{5}+3\sqrt{5}-3\)
\(=-3\)
b, \(với\left(x\ne1;y\ne1;y\ge0\right)\)
\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}=\dfrac{x-1}{\sqrt{y}-1}\dfrac{\sqrt{\left(\sqrt{y}-1\right)^2}}{\left(x-1\right)^2}=\dfrac{\left|\sqrt{y}-1\right|}{\left(\sqrt{y}-1\right)\left(x-1\right)}\left(1\right)\)
\(TH1:y>1\)
\(\left(1\right)=\dfrac{\sqrt{y}-1}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
\(TH2:0\le y< 1\)
\(\left(1\right)=\dfrac{1-\sqrt{y}}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{-1}{x-1}\)
a: Xét (O) có
ΔAMB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác AMCK có
\(\widehat{AKC}+\widehat{AMC}=180^0\)
nên AMCK là tứ giác nội tiếp
hay A,M,C,K cùng thuộc một đường tròn
1,\(\sqrt{\left(x-1\right)^2}=\left|x-1\right|=-\left(x-1\right)=1-x\)
2,\(\sqrt{\left(a-2b\right)^2}=\left|a-2b\right|=-\left(a-2b\right)=2b-a\)
3,\(\sqrt{\left(2x-1\right)^2}=\left|2x-1\right|=2x-1\)
Ý 1 em tự giải
Ý 2:
Phương trình hoành độ giao điểm (P) và (d):
\(x^2=2x-m^2+9\Leftrightarrow x^2-2x+m^2-9=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm phân biệt trái dấu
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m^2-9< 0\)
\(\Leftrightarrow m^2< 9\)
\(\Rightarrow-3< m< 3\)