Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAMB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác AMCK có
\(\widehat{AKC}+\widehat{AMC}=180^0\)
nên AMCK là tứ giác nội tiếp
hay A,M,C,K cùng thuộc một đường tròn
a: \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}-\dfrac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{3}-\sqrt{5}-2\left(\sqrt{5}+\sqrt{3}\right)+3\left(\sqrt{5}-1\right)\)
\(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\sqrt{5}-3\)
=-3
b: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\left|\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\right|\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left|\sqrt{y}-1\right|}{\left(x-1\right)^2}=\pm\dfrac{1}{x-1}\)
a, \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}+\dfrac{4\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{3}-\sqrt{5}+\dfrac{4\sqrt{3}+4\sqrt{5}}{3-5}+3\left|\sqrt{5}-1\right|\)
\(=2\sqrt{3}-\sqrt{5}-2\sqrt{3}-2\sqrt{5}+3\sqrt{5}-3\)
\(=-3\)
b, \(với\left(x\ne1;y\ne1;y\ge0\right)\)
\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}=\dfrac{x-1}{\sqrt{y}-1}\dfrac{\sqrt{\left(\sqrt{y}-1\right)^2}}{\left(x-1\right)^2}=\dfrac{\left|\sqrt{y}-1\right|}{\left(\sqrt{y}-1\right)\left(x-1\right)}\left(1\right)\)
\(TH1:y>1\)
\(\left(1\right)=\dfrac{\sqrt{y}-1}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
\(TH2:0\le y< 1\)
\(\left(1\right)=\dfrac{1-\sqrt{y}}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{-1}{x-1}\)
bạn tự vẽ hình giúp mik nha
a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C
trong \(\Delta ABC\) vuông tại C có
AC=AB.cosBAC=10.cos30=8,7
BC=AB.sinCAB=10.sin30=5
ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B
trong \(\Delta\)ABE vuông tại B có
\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)
mà:CE=AE-AC=11,5-8,7=2,8
b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có
\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)
a: Xét (O) có
EM,EA là tiếp tuyến
nên EM=EA và OE là phân giác của góc MOA(1)
Xét (O) có
FM,FB là tiếp tuyến
nên FM=FB và OF là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc FOE=1/2*180=90 độ
b: EF=EM+MF
=>EF=EA+FB
c: Xét ΔOEF vuông tại O có OM là đường cao
=>ME*MF=OM^2
=>ME*MF=OA^2
Bài 5:
a: \(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)
b: Để A-2>0 thì căn a-2>0
=>căn a>2
=>a>4
c: Để 4/A+1 là số nguyên thì \(\sqrt{a}+1\inƯ\left(4\right)\)
=>\(\sqrt{a}+1\in\left\{1;2;4\right\}\)
=>\(a\in\left\{1;9\right\}\)
a) Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b) Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c) Để \(A=\dfrac{-1}{3}\) thì \(\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{-1}{3}\)
\(\Leftrightarrow3\sqrt{x}=-1\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow3\sqrt{x}+\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)
hay \(x=\dfrac{1}{4}\)
sao lại như thế này hả bn