K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Không gian mẫu khi gieo con súc sắc cân đối và đồng chất:

Ω = {1, 2, 3, 4, 5, 6}

⇒ n(Ω) = 6

Đặt A: "con súc sắc xuất hiện mặt b chấm";

Xét : x2 + bx + 2 = 0 (1)

Δ = b2 – 8

a. Phương trình (1) có nghiệm

⇔ Δ ≥ 0 ⇔ b ≥ 2√2

⇒ b ∈ {3; 4; 5; 6}.

⇒ A = {3, 4, 5, 6}

⇒ n(A) = 4

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

b. (1) vô nghiệm

⇔ Δ < 0 ⇔ b ≤ 2√2

⇒ b ∈ {1; 2}

⇒ A = {1, 2}

⇒ n(A) = 2

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

c. phương trình (1) có nghiệm

⇔ b ∈ {3; 4; 5; 6}.

Thử các giá trị của b ta thấy chỉ có b = 3 phương trình cho nghiệm nguyên.

⇒ A = {3}

⇒ n(A) = 1

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

9 tháng 4 2017

Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.

Ta có bảng:

b

1

2

3

4

5

6

∆ = b2 - 8

-7

-4

1

8

17

28

a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"

thì A = {3, 4, 5, 6}, n(A) = 4 và

P(A) = = .

b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do đó theo qui tắc cộng xác suất ta có

P(B) = 1 - P(A) = .

c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì C = {3}, vì vậy

P(C) = .



24 tháng 7 2019

Đáp án A

phương trình có 2 nghiệm  

Phương trình có nghiệm lớn hơn 3 khi và chỉ khi  

Suy ra xác suất để con súc sắc xuất hiện mặt b thỏa mãn đề bài là

10 tháng 7 2019

Đáp án D

Phương pháp:

+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt  ⇔ ∆   > 0

Cách giải:

Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt  ⇔ ∆   =   b 2   -   8   >   0

Vì b là số chấm của con súc sắc nên

Vậy xác suất cần tìm là  4 6   =   2 3

27 tháng 1 2018

Đáp án D

Phương trình  x 2 + b x + 2 = 0  có hai nghiệm phân biệt

⇔ ∆ = b 2 - 8 > 0

⇒ b ∈ 3 ; 4 ; 5 ; 6

Xác suất cần tìm là  4 6 = 2 3

25 tháng 12 2019

Chọn D

Theo đề bài b là số chấm của con súc sắc nên b ∈ {1;2;3;4;5;6}

Để phương trình  x 2 + 2bx + 4 = 0 có nghiệm thì 

Kết hợp b ∈ [1;6] suy ra  b{2;3;4;5;6} Suy ra xác suất để phương trình

  x 2 + 2bx + 4 = 0 có nghiệm là  5 6

11 tháng 9 2018

Không gian mẫu Ω = ( b , c ) : 1 ≤ b , c ≤ 6 . Kí hiệu A, B, C là các biến cố cần tìm xác suấtứng với các câu a), b), c). Ta có Δ   =   b 2   −   4 c

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c)

 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

10 tháng 8 2019

Đáp án A 

n(W)=6, gọi A là biến cố cần tính xác suất thì

29 tháng 8 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Cách giải:  x 2 + b x + c x   +   1   =   0 (*)

Để phương trình (*) vô nghiệm thì phương trình x2 + bx + c = 0 (**) có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x = -1 

TH2: PT (**) vô nghiệm 

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ≤ 6   ⇒ b ≤ 2 6   ≈ 4 , 9 .

Mà b là số chấm xuất hiện ở lần giao đầu nên  b   ∈ 1 ; 2 ; 3 ; 4

Với b = 1  ta có: c > 1 4   ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6  có 6 cách chọn c.

Với b = 2 ta có: c   >   1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 có 5 cách chọn c.

Với b = 3 ta có: c   >   9 4   ⇒ c ∈ 3 ; 4 ; 5 ; 6  có 4 cách chọn c.

Với b = 4 ta có: c > 4 => c ∈   5 ; 6 có 2 cách chọn c.

Do đó có 6+5+4+2 = 17 cách chọn (b;c) để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu  n Ω   =   6 . 6   =   36

Vậy xác suất đề phương trình (*) vô nghiệm là  1 + 17 36   =   1 2

20 tháng 2 2017

Đáp án là A.

• Số phần tử của không gian mẫu là n ( Ω )   = 36 .

Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình x2 + bx + c = 0 có nghiệm khi và chỉ khi ∆   =   b 2   -   4 a c   ≥ 0 ⇔ b 2   ≥   4 a c .

Xét bảng kết quả (L – loại, không thỏa ; N – nhận, thỏa yêu cầu đề bài)