K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

câu b bn làm tương tự cho quen nha

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

16 tháng 8 2021

a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4

<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0

- sinx=1 => 2cos2x-2cosx+2=0 

pt trên vn

16 tháng 8 2021

b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0

<=> cos(2sinx-1)+2sin2x+3sinx-2=0

<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0

<=> (2sinx-1)(cosx+sinx+2)=0

<=> sinx=1/2 hoặc cosx+sinx=-2(vn)

<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)

26 tháng 11 2018

3 cos 2 x   -   2 sin 2 x   +   sin 2 x   =   1

Với cosx = 0 ta thấy hai vế đều bằng 1. Vậy phương trình có nghiệm x = 0,5π + kπ, k ∈ Z

Trường hợp cosx ≠ 0, chia hai vế cho cos2x ta được:

3   -   4 tan x   +   tan 2 x   =   1   +   tan 2 x     ⇔   4 tan x   =   2     ⇔   tan x   =   0 , 5     ⇔   x   =   a r c tan   0 , 5   +   k π ,   k   ∈   Z

Vậy nghiệm của phương trình là

x = 0,5π + kπ, k ∈ Z

và x = arctan 0,5 + kπ, k ∈ Z

17 tháng 6 2017

Đáp án C

18 tháng 5 2017

a) cosx – √3sinx = √2 ⇔ cosx – tan π/3sinx = √2 ⇔ cos π/3cosx – sinπ/3sinx = √2cosπ/3 ⇔ cos(x +π/3) = √2/2 ⇔ b) 3sin3x – 4cos3x = 5 ⇔ 3/5sin3x – 4/5cos3x = 1. Đặt α = arccos thì phương trình trở thành cosαsin3x – sinαcos3x = 1 ⇔ sin(3x – α) = 1 ⇔ 3x – α = π/2 + k2π ⇔ x = π/6 +α/3 +k(2π/3) , k ∈ Z (trong đó α = arccos3/5). c) Ta có sinx + cosx = √2cos(x – π/4) nên phương trình tương đương với 2√2cos(x – π/4) – √2 = 0 ⇔ cos(x – π/4) = 1/2 ⇔ d) 5cos2x + 12sin2x -13 = 0 ⇔ Đặt α = arccos5/13 thì phương trình trở thành cosαcos2x + sinαsin2x = 1 ⇔ cos(2x – α) = 1 ⇔ x = α/2 + kπ, k ∈ Z (trong đó α = arccos 5/13).

27 tháng 1 2017

24 tháng 7 2017

a. cos2x = 1-sin2x

b. cos2x = 2cos2x - 1

c. 2cosx.cos2x = 1 + cos2x + cos3x

=> 2cosx.cos2x = 2cos2x + 4cos3x - 3cosx

=> cosx(2.(2cos2x - 1) - 2cosx - 4cos2x +3) = 0

=> cosx( -2cosx + 1) = 0

=> cosx=0 hoặc cosx = -1/2

2 tháng 8 2021

\(\left(2cosx+1\right)\left(3cos2x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\3cos2x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\cos2x=\dfrac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{2\pi}{3}+k2\pi\)

2 tháng 8 2021

Tương đương cosx = cos1200

30 tháng 3 2019

Hướng dẫn giải:

Chọn A.

 không là nghiệm của phương trình

Chia 2 vế phương trình cho cos2x ta được