K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

tớ phân tích được:

(4-5y)(5x-4)=-66

nhưng không biết nhận xét để rút bớt nghiệm mong các cậu giúp đỡ

8 tháng 10 2017

À nếu có cách khác thì chỉ tớ với nhé

NV
30 tháng 12 2020

Đặt \(T=\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|\)

\(T=\left|\sqrt{\left(2x-3\right)^2+1}-\sqrt{\left(2x+5\right)^2+7^2}\right|\)

Trong hệ tọa độ Oxy, xét \(M\left(2x;0\right);A\left(3;1\right);B\left(-5;7\right)\)

Ta có: \(\left\{{}\begin{matrix}AM=\sqrt{\left(2x-3\right)^2+1}\\BM=\sqrt{\left(2x+5\right)^2+7^2}\end{matrix}\right.\) ;  \(AB=\sqrt{8^2+6^2}=10\)

\(\Rightarrow T=\left|AM-BM\right|\le AB=10\)

\(\Rightarrow0\le T\le10\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(0\le m\le10\)

Có 11 giá trị nguyên của m thỏa mãn

21 tháng 12 2019

Đáp án: C

NV
4 tháng 1 2021

\(\Leftrightarrow7x-7=16-4y\)

\(\Leftrightarrow7\left(x-1\right)=4\left(4-y\right)\)

Do 7 và 4 nguyên tố cùng nhau

\(\Rightarrow x-1⋮4\Rightarrow x-1=4k\Rightarrow x=4k+1\)

\(\Rightarrow y=-7k+4\)

Vậy nghiệm của pt có dạng: \(\left(x;y\right)=\left(4k+1;-7k+4\right)\) với \(k\in Z\)

30 tháng 3 2019

Chọn C.

Ta có:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Mà x nguyên ⇒ x ∈ {4;5;....;11}

Vậy có 8 giá trị của x thỏa mãn hệ bất phương trình.

NV
26 tháng 3 2021

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn C.

3 tháng 1 2021

Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).

Ta có hpt:

\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)

\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).

Đến đây thế vào là được.

 

NV
3 tháng 1 2022

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) không phải nghiệm

- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:

\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)

Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)

Pt trở thành: \(t^2+2t+3-2m=0\)

\(\Leftrightarrow t^2+2t+3=2m\) (1)

Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)

Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)

Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)

\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)

3 tháng 1 2022

Em cảm ơn thầy ạ.