K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

bổ sung đề là tìm x,y nguyên dương

b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)

Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)

Ta có: \(4\le y\le6\)

Đến đây bí,alibaba!

16 tháng 1 2019

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) nha bạn!

ko hỉu thì ib

16 tháng 1 2019

\(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\ge9\) với x,y,z dương hay jj đó chứ? (cái này t k bt -.-) VD: x=2, y=-2,z=4

=> \(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)=\left(2-2+4\right).\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{4}\right)=1\)

-----------------------------------------------------------------------------------------

\(\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{x+y+z}{x+y+z}=0\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

vì x+y+z khác 0 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{xy+yz+xz}{xyz}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{\left(xy+yz+xz\right).\left(x+y+z\right)-xyz}{xzy.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{x^2y+xy^2+xyz+zyx+y^2z+yz^2+x^2z+xyz+xz^2-xzy}{xyz.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\left(yz^2+xzy\right)+\left(x^2z+xz^2\right)=0\)

\(\Leftrightarrow xy.\left(x+z\right)+y^2.\left(x+z\right)+yz.\left(z+x\right)+xz.\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left[x.\left(y+z\right)+y.\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x+y\right).\left(y+z\right).\left(x+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=-z\end{cases}\text{hoặc }x=-z}\)

\(\Rightarrow P=\left(\frac{1}{x}-\frac{1}{y}\right).\left(\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

ps: bài này t làm cách l8, ai có cách ez hơn giải vs ak :')  morongtammat

\(a)2xy+4y-x=5\)

\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)

\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)

\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)

\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét từng trường hợp :

  • \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
  • \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
  • \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
  • \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)

Vậy

\(2x+y=xy-3\)

\(\Leftrightarrow xy-2x-y=3\)

\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)

\(\Leftrightarrow x\left(y-2\right)-y+2=5\)

\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)

\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét các trường hợp như câu trên và kết luận

4 tháng 1 2018

\(\frac{1}{x}=\frac{1}{6}+\frac{3}{y}\) <=> \(\frac{1}{x}=\frac{y+18}{6y}\) (x, y khác 0)

=> \(x=\frac{6y}{y+18}=\frac{6y+108-108}{y+18}=\frac{6\left(y+18\right)-108}{y+18}\)

=> \(x=6-\frac{108}{y+18}\)

=> Để x nguyên thì 108 chia hết cho y+18 => y+18=(-2,-3,-4,-6,-9,-12,-27,-36,-54,-108,2,3,4,6,9,12,18,27,36,54,108)

=> y và x

4 tháng 1 2018

\(\frac{1}{x}\)\(\frac{1}{6}\)+\(\frac{3}{y}\)

        = 6+3 = 1+y

        = 9 =1+y

       y = 9-1

       y = 8

\(\frac{1}{x}\)= 8

x = 1.8

x = 8

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(=>\frac{y-x}{xy}=\frac{1}{xy}\)

\(=>xy^2-x^2y=xy\)

\(=>xy^2-x^2y-xy=0\)

\(=>x.\left(y^2-xy-y\right)=0\)

\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)

Ta thấy \(y^2-xy-y=0\)

\(=>y.\left(y-x-y\right)=0\)

\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)

Từ 1 và 2 => x = y = 0

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Rightarrow y-x=1\)

Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)

19 tháng 10 2019

thiếu đề không bạn

19 tháng 10 2019

                                                        Bài giải

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2x+2y+2z}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

Thiếu đề à bạn ?