Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề là \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)
CM: \(\frac{x-y}{4}=\frac{y-z}{5}.\)
Ta có: \(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\)
\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}.\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}.\)
+ Xét \(\frac{x+z}{10}=\frac{y+z}{6}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x+z}{10}=\frac{y+z}{6}=\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\) (1).
+ Xét \(\frac{x+y}{15}=\frac{x+z}{10}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x+y}{15}=\frac{x+z}{10}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right).\)
Chúc bạn học tốt!
\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7
Thay \(x\) = y.\(\dfrac{3}{4}\) và z = \(\dfrac{y}{5}\).7 vào biểu thức:
2\(x\) + 3y - z = 186 ta có:
2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186
y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186
y.\(\dfrac{31}{10}\) = 186
y = 186 : \(\dfrac{31}{10}\)
y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84
\(x\) + y + z = 45 + 60 + 84 = 189
Mình không hiểu câu sau của đề bài.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó:
\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)
\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)
\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)
Tổng là: \(x+y+z=45+60+84=189\)
Vậy....
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{358}{65}\)
\(\hept{\begin{cases}\frac{x^2}{25}=\frac{358}{65}\\\frac{y^2}{49}=\frac{358}{65}\\\frac{z^2}{9}=\frac{358}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\frac{1790}{13}\\y^2=\frac{17542}{65}\\z^2=\frac{3222}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1790}{13}}\\y=\sqrt{\frac{17542}{65}}\\z=\sqrt{\frac{3222}{65}}\end{cases}}\)
Vậy ...
a) Đặt \(\frac{x}{-3}=\frac{y}{5}=k\left(k\ne0\right)\)
\(\Rightarrow x=-3k\); \(y=5k\)
Ta có: \(xy=\left(-3k\right).5k=-15k^2=-\frac{5}{27}\)
\(\Rightarrow k^2=\frac{1}{81}\)\(\Rightarrow k=\pm\frac{1}{9}\)
+) Nếu \(k=\frac{-1}{9}\)\(\Rightarrow x=\left(\frac{-1}{9}\right).\left(-3\right)=\frac{1}{3}\); \(y=\frac{-1}{9}.5=\frac{-5}{9}\)
+) Nếu \(k=\frac{1}{9}\)\(\Rightarrow x=\frac{1}{9}.3=\frac{1}{3}\); \(y=\frac{1}{9}.5=\frac{5}{9}\)
Vậy \(x=\frac{1}{3}\); \(y=\frac{-5}{9}\)hoặc \(x=\frac{1}{3}\); \(y=\frac{5}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và\(x-y+z=36\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\)\(x=5.6=30\)
\(y=6.6=36\)
\(z=7.6=30\)
b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)và\(x+y-z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)
\(\Rightarrow\)\(x=-4.5=-20\)
\(y=-4.-6=24\)
\(z=-4.7=-28\)
c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.3=6\)
\(z=2.2=4\)
d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.2=4\)
\(z=3.2=6\)
Hok tốt!
@Kaito Kid
a) ta có: \(\frac{x}{8}=\frac{y}{3}=\frac{2x}{16}=\frac{3y}{9}\)
ADTCDTSBN
...
b) ta có: \(\frac{x}{7}=\frac{y}{5}\Rightarrow\frac{x}{63}=\frac{y}{45}\)
\(\frac{z}{8}=\frac{y}{9}\Rightarrow\frac{z}{40}=\frac{y}{45}\)
\(\Rightarrow\frac{x}{63}=\frac{y}{45}=\frac{z}{40}\)
ADTCDTSBN
...
bn tự lm típ nha
Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{5}=\dfrac{x-y+z}{3-5+5}=\dfrac{32}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}x=32\\y=\dfrac{160}{3}\\z=\dfrac{160}{3}\end{matrix}\right.\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{5}=\dfrac{x-y+z}{3-5+5}=\dfrac{32}{3}\)
\(\dfrac{x}{3}=\dfrac{32}{3}\Rightarrow x=32\\ \dfrac{y}{5}=\dfrac{32}{3}\Rightarrow y=\dfrac{160}{3}\\ \dfrac{z}{5}=\dfrac{32}{3}\Rightarrow z=\dfrac{160}{3}\)