Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 có lẽ dễ nhất luôn :
tách x^2+(1+y)^2=1 thành x^2+1+2y+y^2=1 (1)
tách y^2+(1+x)^2=1 thành y^2+1+2x+x^2=1 (2)
lấy(1) trừ( 2)
==>>>> x=y
tự làm tiếp nhé
c/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:
\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)
Bạn tự bấm máy
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)
TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)
Cộng vế:
\(\Rightarrow x^2+y^2+2xy+x+y=20\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-5-x\end{matrix}\right.\)
Thế vào pt đầu...
Biến đổi pt dưới:
\(x^2-4x+4+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)
Thay vào pt đầu giải bt
Câu 1:
Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):
$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$
$\Leftrightarrow 9y^2-42y+48=0$
$\Leftrightarrow (y-2)(9y-24)=0$
$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$
Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$
Câu 3: Bạn xem lại PT(2) là -x+y đúng không?
Câu 4:
$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$
$\Leftrightarrow 3^3-9xy=7$
$\Leftrightarrow xy=\frac{20}{9}$
Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:
$X^2-3X-\frac{20}{9}=0$
$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị
$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+1\right)=xy-1\\\left(x-2\right)\left(y-2\right)=xy-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy+x-y-1=xy-1\\xy-2x-2y+4=xy-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y=0\\-2x-2y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2y=0\\2x+2y=12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x=12\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=x=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+1\right)=xy-1\\\left(x-2\right)\left(y-2\right)=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-y-1=xy-1\\xy-2x-2y+4=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)