Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
Câu 4:
\(\dfrac{3x+5}{16}-\dfrac{3x-5}{26}=\dfrac{3x-8}{29}-\dfrac{3x+8}{13}\)
\(\Leftrightarrow\left(\dfrac{3x+5}{16}+1\right)-\left(\dfrac{3x-5}{26}+1\right)=\left(\dfrac{3x-8}{29}+1\right)-\left(\dfrac{3x-8}{13}+1\right)\)
\(\Leftrightarrow\left(3x+21\right)\left(\dfrac{1}{16}-\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{13}\right)=0\)
=>3x+21=0
hay x=-7
Ta có:
\(-x^2+x\)
= \(-x^2+x-\dfrac{1}{4}+\dfrac{1}{4}\)
= \(-(x^2-x+\dfrac{1}{4})+\dfrac{1}{4}\)
= \(-(x-\dfrac{1}{2})^2+\dfrac{1}{4}\)
Ta thấy:
\(-(x-\dfrac{1}{2})^2\le0\)
=> \(-(x-\dfrac{1}{2})^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow\) \(x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\) \(x=\dfrac{1}{2}\)
Vậy MAX -x2 + x bằng \(\dfrac{1}{4}\) tại \(x=\dfrac{1}{2}\)
Ta có: \(2x+10=3\left(x+3\right)\)
\(\Leftrightarrow2x+10=3x+9\)
\(\Leftrightarrow2x-3x=9-10\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vây: Tập nghiệm của phương trình là: \(S=\left\{1\right\}\)
_Chúc bạn học tốt_
2x + 10 = 3( x + 3)
\(\Leftrightarrow\) 2x + 10 = 3x + 9
\(\Leftrightarrow\) 2x - 3x = 9 - 10
\(\Leftrightarrow\) -x = -1
\(\Leftrightarrow\) x = 1
Vậy phương trình đã cho có nghiệm là x = 1
\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)
\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)
\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)
\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)
\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{2x-3}{4x^2-6x+2}\)