Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt m = x 2 +3x -1
Ta có: x 2 + 3 x - 1 2 +2( x 2 +3x -1) -8 =0 ⇔ m 2 +2m -8 =0
∆ ’ = 1 2 -1.(-8) =1 +8 =9 > 0
∆ ' = 9 =3
Với m = 2 thì : x 2 +3x - 1 = 2 ⇔ x 2 + 3x - 3 = 0
∆ ’ = 3 2 -4.1.(-3 )=9 +12=21 > 0
∆ ' = 21
Với m = -4 ta có: x 2 +3x -1 = -4 ⇔ x 2 +3x +3 = 0
∆ = 3 2 -4.1.3=9 -12 = -3 < 0
Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm :
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề bài được rõ ràng hơn.
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5
ĐK: \(x\ge8\)
Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)
\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)
\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)
\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)
Đặt \(b+1=c\text{ (}c\ge1\text{)}\)
\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)
\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)
\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)
\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)
Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được
\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)
Kết luận: \(x=9\).
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
*Cách 2: Đặt m = 3x – 2, n = 3y + 2
Ta có hệ phương trình:
Ta có: 3x – 2 = 9/17 ⇔ 3x = 2 + 9/17 ⇔ 3x = 43/17 ⇔ x = 43/51
3y + 2 = - 10/17 ⇔ 3y = -2 - 10/17 ⇔ 3y = - 44/17 ⇔ y = - 44/51
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
Đặt m= x 2 -3x +2
Ta có: ( x 2 -3x +4)( x 2 -3x +2) =3
⇔ [( x 2 -3x +2 +2)( x 2 -3x +2) -3 =0
⇔ x 2 - 3 x + 2 2 +2( x 2 -3x +2) -3 =0
⇔ m 2 +2m -3 =0
Phương trình m 2 +2m -3 = 0 có hệ số a = 1, b = 2 , c = -3 nên có dạng
a +b+c=0
suy ra : m 1 =1 , m 2 =-3
Với m 1 =1 ta có: x 2 -3x +2 =1 ⇔ x 2 -3x +1=0
∆ = - 3 2 -4.1.1 = 9 -4 =5 > 0
∆ = 5
Với m 2 =-3 ta có: x 2 -3x +2 =-3 ⇔ x 2 -3x +5=0
∆ = - 3 2 -4.1.5 = 9 -20 =-11 < 0.Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm :