Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả 2 vế của S với 3 ta được :
3S = 3(1.2 + 2.3 + 3.4 + ..... + 49.50)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.59.50
= (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) + ......... + (48.49.50 - 48.49.50) + 49.50.51
= 49.50.51
=> S = 49.50.51/3 = 41650
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Ta có:
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)
\(S=1-\dfrac{1}{2018}\)
\(S=\dfrac{2017}{2018}\)
=1/1.2+1/2.3+1/3.4+...1/2017.2018
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018
=1-1/2018
=2018/2018-1/2018
=2017/2018
\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vậy A=49/50
Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A=\(\frac{49.50.51}{3}\)49.50.513
A=\(\frac{49.50.17.3}{3}\)49.50.17.33
A=49.50.17
A=41650
Đáp số : A=41650
1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\)
\(\Rightarrow A=\dfrac{49}{50}\)
Vậy \(A=\dfrac{49}{50}.\)
S=1.2+2.3+3.4+...+99.100
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=3333.100
S=333300
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300