K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2015

t chắc chắn đúng luôn

.Yên tâm đi bảo đảm đó

19 tháng 4 2017

ta có: 2(a+b)=12\(\Rightarrow\)a+b=6

M=8(a-b)+16b

=8(a-b+2b)=8(a+b)

=8\(\times\)6= 48

Vậy M=48 tại 2(a+b)=12.

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

18 tháng 2 2016

vì n-1 là Ư của 5 => n-1=1 hoặc 5

n-1=5=>n=6

n-1=1=>n=2

=> n =6 hoặc n=2

thong oy ấy k ik

18 tháng 2 2016

n-1 là ước của 5 => n-1 E { 1;-1;5;-5 }

  • với n-1=1 => n=2
  • với n-1=-1 => n=0
  • với n-1=5 => n=6
  • với n-1= -5 => n=-4

vậy n={ 0;2;-4;6 }

b) A= -5/m-1 có giá trị nguyên => -5 chia hết cho m-1 hay m-1 E Ư(-5)={ -1; 1; 5; -5 }

  • với m-1= -1 => m=0
  • với m-1= 1 => m = 2
  • với m-1=5 => m=6
  • m-1= -4 => m= --3

vậy m={ 0;2;-3;6 }

24 tháng 3 2020

A=37-|x-8|

Ta có:|x-8| >=0 với mọi x thuộc Z

=> 37-|x-8| =< 37 hay A =< 37

Dấu "=" <=> |x-8|=0 <=> x-8=0 <=> x=8

Vậy MaxA=37 đạt được khi x=8

8 tháng 3 2016

Để A dương 

<=>2x-1>0

<=>2x>1

<=>x>1/2

b,Để B âm 

<=>8-2x<0

<=>2x>8

<=>x>4

c,Để C không âm

<=>\(2\left(x+3\right)\ge0\)

<=>\(x+3\ge0\)

<=>\(x\ge-3\)

d,Để D không dương

<=>\(7\left(2-x\right)\le0\)

<=>\(2-x\le0\)

<=>\(x\ge2\)

Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại.

16 tháng 2 2020

a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)

Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)