Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=x^2+2xy+y^2-6x-6y+25\)
\(=\left(x+y\right)^2-6\left(x+y\right)+25\)
\(=\left(x+y\right)\left(x+y-6\right)+25\)
\(=3\cdot\left(3-6\right)+25\)
=-9+25
=16
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)
\(=\left(x-y\right)^2+x=\left(25-5\right)^2+25=20^2+25=400+25=425\)
x2-2xy+y2+x
= (x-y)2+ x
thay số:
= (25-5)2+ 25
= 202+25
= 400+25
= 425
Vậy biểu thức có giá trị là 425 khi x=25 và y=5.
a) \(N=x^2-10x+25\)
\(N=x^2-2\cdot5\cdot x+5^2\)
\(N=\left(x-5\right)^2\)
Thay x = 55 vào N ta có:
\(N=\left(55-5\right)^2=2500\)
b) \(P=\dfrac{x^4}{4}-x^2y+y^2\)
\(P=\left(\dfrac{x^2}{2}\right)^2-2\cdot\dfrac{x^2}{2}\cdot y+y^2\)
\(P=\left(\dfrac{x^2}{2}-y\right)^2\)
Thay x = 4 và \(y=\dfrac{1}{2}\) vào P ta có:
\(P=\left(\dfrac{4^2}{2}-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\)
Phần b mình thấy kết quả nó sai b ạ thầy cho mình đáp án là 225/9
\(A=x^2+y^2+\left(\dfrac{1}{2}\right)^2-2xy+2.\dfrac{1}{2}x-2.\dfrac{1}{2}.y+\dfrac{3}{4}\)
\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)
\(=\left(x-y\right)^2+x=\left(25-5\right)^2+5=20^2+5=405\)