K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c) \(F=\frac{x^2+y^2}{x^2+2xy+y^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{2xy}{4xy}=\frac{1}{2}\)

20 tháng 11 2019

Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

Bài 1:

a) Ta có: \(x^2+4y^2-4xy=\left(x-2y\right)^2\)(*)

Thay x=18, y=4 vào biểu thức (*), ta được

\(\left(18-2\cdot4\right)^2=\left(18-8\right)^2=100\)

Vậy: 100 là giá trị của biểu thức \(x^2+4y^2-4xy\) tại x=18 và y=4

b) Ta có: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2\)(1)

Thay x=100 vào biểu thức (1), ta được

\(\left(4\cdot100\right)^2=400^2=160000\)

Vậy: 160000 là giá trị của biểu thức \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)tại x=100

Bài 2:

a) Để giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định thì \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

Vậy: khi \(x\notin\left\{0;5\right\}\) thì giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định

b) Để giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định thì

\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Vậy: khi \(x\notin\pm2\) thì giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định

19 tháng 1 2020

Bài 1:

\(a,x^2+4y^2-4xy\)

\(=\left(x-2y\right)^2\left(1\right)\)

Thay \(x=18;y=4\) vào \(\left(1\right)\) ta được:

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)

Vậy ......................................

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2.\left(4x^2-1\right)\)

Thay \(x=100\) vào biểu thức trên ta được:

\(\left(2.100+1\right)^2+\left(2.100-1\right)^2+2\left(4.100^2-1\right)\)

\(=201^2+199^2+2.39989\)

\(=40401+39601+79978\)

\(=160000\)

Vậy ............................

Bài 2:

\(a,\frac{x^2-10x+25}{x^2-5x}\)

Để biểu thức trên được xác định \(\Leftrightarrow x^2-5x\ne0\)

\(\Leftrightarrow x\left(x-5\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(b,\frac{x^2-10x}{x^2-4}\)

Để biểu thức trên xác định \(\Leftrightarrow x^2-4\ne0\)

\(\Leftrightarrow x^2-2^2\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

12 tháng 8 2015

2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab)                                                                         =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m

30 tháng 6 2018

bài 1 

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)

20 tháng 8 2018

+) ta có : \(D=x^2+y^2+2xy-4x-4y+100\)

\(=\left(x+y\right)^2-4\left(x+y\right)+100=3^2-4.3+100=97\)

+) ta có : \(2x^2+y^2=4y-4x-6\Leftrightarrow2x^2+4x+2+y^2-4y+4=0\)

\(\Leftrightarrow2\left(x+1\right)^2+\left(y-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

thế vào \(A\) ta có :

\(A=\dfrac{2x^{100}+5\left(y-3\right)^{2011}}{x+y}=\dfrac{2.\left(-1\right)^{100}+5\left(2-3\right)^{2011}}{-1+2}=-3\)