Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là a, b ( a, b ∈ N )
Theo đề bài ta có :
a + b = 3( a - b )
⇔ a + b = 3a - 3b
⇔ a + b - 3a + 3b = 0
⇔ 4b - 2a = 0
⇔ 4b = 2a
⇔ 2b = a
⇔ a : b = 2
Vậy thương của chúng là 2
gọi hai số đó là a và b
Theo đề ; ta có
\(a+b=3\left(a-b\right)\)
\(a+b=3a-3b\)
\(b+3b=3a-a\)
\(2a=4b\)
\(a=2b\)
\(\frac{a}{b}=2\)
Vậy thương của hai số tự nhiên đó là 2
Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:
S = a(1 - r^n)/(1 - r),
trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.
Áp dụng công thức trên vào bài toán của chúng ta, ta có:
a = 5, r = 5 và n = 99.
Thay các giá trị vào, ta có:
S = 5(1 - 5^99)/(1 - 5).
Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.
Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).
Áp dụng tính chất này vào công thức trên, ta có:
S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).
Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.
Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).
Áp dụng tính chất này vào bài toán của chúng ta, ta có:
5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).
Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:
4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).
Do đó, ta có:
4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).
Vậy, chúng ta có:
S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).
Kết quả là tổng A chia hết cho 31.
\(x⋮\) 5; \(x\) ⋮ 9; \(x\) ≤ 400
\(x\) ⋮ 5; 9 ⇒ \(x\) \(\in\) BC(5; 9)
5 = 5; 9 = 32; BCNN(5;9) = 32.5 = 45
\(x\in\) BC(45) = {0; 45; 90; 135; 180; 225; 270; 315; 360; 405;...;}
\(x\) ≤ 400 nên \(x\in\){0; 45; 90; 135; 225; 270; 315; 360; 405}
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
Cái này mình làm tròn lên thôi bạn