Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
\(\dfrac{1}{7}A=\dfrac{1}{7}\left(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\right)\)
\(=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)
\(=\dfrac{7-2}{2.7}+\dfrac{11-7}{7.11}+\dfrac{14-11}{11.14}+\dfrac{15-14}{14.15}+\dfrac{28-15}{15.28}\)
\(=\dfrac{7}{2.7}-\dfrac{2}{2.7}+\dfrac{11}{7.11}-\dfrac{7}{7.11}+\dfrac{14}{11.14}-\dfrac{11}{11.14}+\dfrac{15}{14.15}-\dfrac{14}{14.15}+\dfrac{28}{15.28}-\dfrac{15}{15.28}\)
\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\)
\(=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{14}{28}-\dfrac{1}{28}=\dfrac{13}{28}\)
\(A=\dfrac{13}{28}\div\dfrac{1}{7}=\dfrac{13}{4}\)
Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
\(\Rightarrow\dfrac{1}{7}.A=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)
\(\Rightarrow\dfrac{1}{7}.A=\left(\dfrac{1}{2}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{14}\right)+\left(\dfrac{1}{14}-\dfrac{1}{15}\right)+\left(\dfrac{1}{15}-\dfrac{1}{28}\right)\)
\(\Rightarrow\dfrac{1}{7}.A=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{13}{28}\)
\(\Leftrightarrow A=\dfrac{13}{4}\)
Vậy...................
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
141/44
\(\frac{5}{2}+\frac{4}{11}+\frac{1}{11}+\frac{1}{30}+\frac{13}{60}=\frac{5}{2}+\frac{1}{30}+\frac{13}{60}+\frac{4}{11}+\frac{1}{11}\)
\(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}+\frac{5}{11}=\frac{33}{12}+\frac{5}{11}\)
\(\frac{363}{132}+\frac{60}{132}=\frac{423}{132}=\frac{36}{11}\)