Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
\(\frac{5}{2}+\frac{4}{11}+\frac{1}{11}+\frac{1}{30}+\frac{13}{60}=\frac{5}{2}+\frac{1}{30}+\frac{13}{60}+\frac{4}{11}+\frac{1}{11}\)
\(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}+\frac{5}{11}=\frac{33}{12}+\frac{5}{11}\)
\(\frac{363}{132}+\frac{60}{132}=\frac{423}{132}=\frac{36}{11}\)
a) \(\frac{9}{33-3}=\frac{1}{3}\)
b) \(\frac{7}{100+6\times100}=\frac{1}{100}\)
c) \(\frac{11\times22+33\times36+55\times60}{22\times24+66\times72+110\times120}=\frac{1}{4}\)
d) \(\frac{9^4\times27^5\times3^6\times4^4}{3^8\times81^4\times243\times8^2}=4\)
e) \(\frac{199919991999}{200020002000}=\frac{1999}{2000}\)
a) \(-\frac{8}{18}-\frac{15}{27}=-\frac{4}{9}-\frac{5}{9}=\frac{-9}{9}=-1\)
b) \(\frac{19}{24}-\left(-\frac{1}{2}+\frac{7}{24}\right)\)
\(=\frac{19}{24}+\frac{12}{24}-\frac{7}{24}=\frac{24}{24}=1\)
c) \(P=\frac{3^{11}.11+3^{11}.21}{3^9.2^5}\)
\(P=\frac{3^{11}.\left(11+21\right)}{2^9.2^5}=\frac{3^{11}.32}{2^9.32}=3^2=9\)
d) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{99}{50}\)
Áp dụng \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{306}{1225}\)
a) -2/5
b) 2/3
c) 1/30
d) 512