K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

\(\dfrac{1}{7}A=\dfrac{1}{7}\left(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\right)\)

\(=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)

\(=\dfrac{7-2}{2.7}+\dfrac{11-7}{7.11}+\dfrac{14-11}{11.14}+\dfrac{15-14}{14.15}+\dfrac{28-15}{15.28}\)

\(=\dfrac{7}{2.7}-\dfrac{2}{2.7}+\dfrac{11}{7.11}-\dfrac{7}{7.11}+\dfrac{14}{11.14}-\dfrac{11}{11.14}+\dfrac{15}{14.15}-\dfrac{14}{14.15}+\dfrac{28}{15.28}-\dfrac{15}{15.28}\)

\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\)

\(=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{14}{28}-\dfrac{1}{28}=\dfrac{13}{28}\)

\(A=\dfrac{13}{28}\div\dfrac{1}{7}=\dfrac{13}{4}\)

6 tháng 5 2017

Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

\(\Rightarrow\dfrac{1}{7}.A=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)

\(\Rightarrow\dfrac{1}{7}.A=\left(\dfrac{1}{2}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{14}\right)+\left(\dfrac{1}{14}-\dfrac{1}{15}\right)+\left(\dfrac{1}{15}-\dfrac{1}{28}\right)\)

\(\Rightarrow\dfrac{1}{7}.A=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{13}{28}\)

\(\Leftrightarrow A=\dfrac{13}{4}\)

Vậy...................

7 tháng 3 2019

1/7B=5/2.7+4/7.11+3/11.14+1/14.15+13/15.28

1/7B=1/2-1/7+1/7-1/11+1/11-1/14+1/14-1/15+1/15-1/28

1/7B=1/2-1/28

B=(1/2-1/28):1/7

9 tháng 3 2017

141/44

9 tháng 3 2017

\(\frac{5}{2}+\frac{4}{11}+\frac{1}{11}+\frac{1}{30}+\frac{13}{60}=\frac{5}{2}+\frac{1}{30}+\frac{13}{60}+\frac{4}{11}+\frac{1}{11}\)

\(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}+\frac{5}{11}=\frac{33}{12}+\frac{5}{11}\)

\(\frac{363}{132}+\frac{60}{132}=\frac{423}{132}=\frac{36}{11}\)

17 tháng 10 2017

\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)

\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)

26 tháng 7 2017

a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)

\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)

\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)

\(=\left(-\dfrac{1}{2}\right)2+1\)

\(=-1+1\)

\(=0\)

@Trịnh Thị Thảo Nhi

29 tháng 4 2018

a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1

=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1

=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1

=(−12)2+1=(−12)2+1

=−1+1=−1+1

=0=0

9 tháng 5 2023

A = \(\dfrac{3}{3\times7}\)\(\dfrac{3}{7\times11}\)\(\dfrac{3}{11\times15}\)+...+\(\dfrac{3}{107\times111}\)

A = \(\dfrac{3}{4}\) \(\times\)\(\dfrac{4}{3\times7}\)\(\dfrac{4}{7\times11}\)\(\dfrac{4}{11\times15}\)+...+\(\dfrac{4}{107\times111}\))

A = \(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)\(\dfrac{1}{11}\) - \(\dfrac{1}{15}\)+...+ \(\dfrac{1}{107}\)\(\dfrac{1}{111}\))

A = \(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{111}\))

A = \(\dfrac{9}{37}\) > \(\dfrac{9}{45}\) = \(\dfrac{1}{5}\) 

Vậy  \(\dfrac{3}{3\times7}\) + \(\dfrac{3}{7\times11}\)\(\dfrac{3}{11\times15}\) + ...+ \(\dfrac{3}{107\times111}\) > \(\dfrac{1}{5}\) ( đpcm)

 

 

 

9 tháng 5 2023

Bạn ơi thế này thì đúng hơn chứ:

\(\dfrac{3}{3.7}+\dfrac{3}{7.11}+\dfrac{3}{11.15}+...+\dfrac{3}{107.111}>\dfrac{1}{5}\)

\(=\dfrac{3^2\cdot2^{36}}{11\cdot2^{35}-2^{36}}=\dfrac{3^2\cdot2^{36}}{2^{35}\left(11-2\right)}=2\)

29 tháng 3 2018

\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)

\(=2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=2.\left(1-\dfrac{1}{100}\right)=2.\dfrac{99}{100}=\dfrac{99}{50}\)