Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Tử số là A ta có
\(2A=2+2^2+2^3+2^4+..+2^{2016}\)
\(A=2A-A=2^{2016}-1\)
\(\Rightarrow S=\frac{2^{2016}-1}{1-2^{2016}}=\frac{-\left(1-2^{2016}\right)}{1-2^{2016}}=-1\)
\(S=\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
\(\Rightarrow2S=\frac{2\left(1+2+2^2+2^3+...+2^{2015}\right)}{1-2^{2016}}\)
\(\Rightarrow2S=\frac{2+2^2+2^3+2^4+...+2^{2016}}{1-2^{2016}}\)
\(\Rightarrow2S-S=\frac{2+2^2+2^3+2^4+...+2^{2016}}{1-2^{2016}}-\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
\(\Rightarrow S=\frac{2^{2016}-1}{1-2^{2016}}=-1\)
Khi nào có bài khó thì cứ đăng lên nhé, mình sẽ giúp ^.^
a) \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)
B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)
BÀI 2:
A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)
\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)
\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)
\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)
ngoặc 1 có 99 số hạng x
\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3.\frac{99}{100}=1\)
\(\Leftrightarrow99x=1+\frac{3.99}{100}\)
\(\Leftrightarrow99x=\frac{397}{100}\)
\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)
ta có \(\left(1-\frac{1}{2010}.\right).\left(1-\frac{2}{2010}\right)....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).......0.\left(1-\frac{2011}{2010}\right)=0\)
Bài 1 :
a) x={2,4}
b) x-1={-3,-2,-1,0,1,2,3,4}
=> x={-2,-1,0,1,2,3,4,5}
c) x+2={-7,-6,-5,-4}
=> x={-9,-8,-7,-6}
Bài 2 :
(x-3)(x+2)=0
=> x-3=0 => x=3
=> x+2=0 => x=-2
Vậy x=-2 hoặc x=3
BÀI 1
A) 3<X<5
=>X=4
B) -4<X+2<5
=>X-1\(\in\left(-3;-2;-1;0;1;2;3;4\right)\)
=> X-1=-3 => X-1=-2 =>X-1=-1 =>X-1=0 => X-1=1
X=-2 X=-1 X= 0 X=1 X=2
=>X-1=2 => X-1=3 =>X-1=4
X=3 X=4 X=5
C) -8<X+2<-3
=> X+2\(\in\left(-7;-6;-5;-4\right)\)
=> X+2=-7 =>X+2=-6 =>X+2=-5 =>X+2=-4
X=-9 X=-8 X=-7 X=-6
BÀI 2
\(\left(X-3\right).\left(X+2\right)=0\)
\(\Rightarrow X-3=X+2=O\)
\(TH1:X-3=0\)
X=3
TH2: X+2=0
X=-2
VẬY X=3 HOẶC X=-2
B = \(\frac{1}{1+\frac{1}{2}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}+\frac{1}{1+\frac{1}{3}}\)
B = \(\frac{1}{\frac{2}{2}+\frac{1}{2}}+\frac{1}{1+\frac{1}{\frac{2}{2}+\frac{1}{2}}}+\frac{1}{\frac{3}{3}+\frac{1}{3}}\)
B = \(\frac{1}{\frac{3}{2}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}+\frac{1}{\frac{4}{3}}\)
B = \(\frac{2}{3}+\frac{1}{1+\frac{2}{3}}+\frac{3}{4}\)
B = \(\frac{2}{3}+\frac{1}{\frac{3}{3}+\frac{2}{3}}+\frac{3}{4}\)
B = \(\frac{2}{3}+\frac{1}{\frac{5}{3}}+\frac{3}{4}\)
B = \(\frac{2}{3}+\frac{3}{5}+\frac{3}{4}\)
B = \(\frac{121}{60}\)
cái này tính từng phân số theo quy luật từ dưới lên trên rồi tính B là ra
Hình như sai đề bài bạn nhé! Đề bài đúng như dưới nhé!
\(\frac{3}{4}\).\(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}.\frac{48}{49}\)
= \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}.\frac{5.7}{6.6}.\frac{6.8}{7.7}\)
= \(\left(\frac{1.2.3.4.5.6}{2.3.4.5.6.7}\right).\left(\frac{3.4.5.6.7.8}{2.3.4.5.6.7}\right)\)
= \(\frac{1}{7}.\frac{8}{2}\)
= \(\frac{1}{7}.4=\frac{4}{7}\)
\(x=\frac{\left[6+3^2.2-6.3^2\right]^2}{\left[3^2+3.3^2-3^4\right]^2}=\frac{\left[6\left[1+3-9\right]\right]^2}{\left[9+27-81\right]^2}=\frac{\left[-30\right]^2}{\left[-45\right]^2}=\frac{900}{2025}=\frac{4}{9}\)
\(\frac{1}{3^2}<\frac{1}{3.4}\)
\(\frac{1}{4^2}<\frac{1}{4.5}\)
\(\frac{1}{5^2}<\frac{1}{5.6}\)
\(...\)
\(\frac{1}{100^2}<\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)
Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)
hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)
Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2
Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100
A<1/2-1/100<1/2
Ta có điều phải chứng minh.
Ta có:\(\frac{16}{25}\)+ (x+\(\frac{1}{3}\))\(^2\)=1
(x+\(\frac{1}{3}\))\(^2\)= \(\frac{9}{25}\)
x+\(\frac{1}{3}\)= \(\frac{3}{5}\)
x=\(\frac{4}{15}\)
\(\frac{16}{25}+\left(x+\frac{1}{3}\right)^2=1\)
\(\left(x+\frac{1}{3}\right)^2=1-\frac{16}{25}\)
\(\left(x+\frac{1}{3}\right)^2=\frac{9}{25}=0,36\)
\(x+\frac{1}{3}=0,6=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{6}\)
\(x=\frac{13}{30}\)