K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

B = \(\frac{1}{1+\frac{1}{2}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}+\frac{1}{1+\frac{1}{3}}\)

B = \(\frac{1}{\frac{2}{2}+\frac{1}{2}}+\frac{1}{1+\frac{1}{\frac{2}{2}+\frac{1}{2}}}+\frac{1}{\frac{3}{3}+\frac{1}{3}}\)

B = \(\frac{1}{\frac{3}{2}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}+\frac{1}{\frac{4}{3}}\)

B = \(\frac{2}{3}+\frac{1}{1+\frac{2}{3}}+\frac{3}{4}\)

B = \(\frac{2}{3}+\frac{1}{\frac{3}{3}+\frac{2}{3}}+\frac{3}{4}\)

B = \(\frac{2}{3}+\frac{1}{\frac{5}{3}}+\frac{3}{4}\)

B = \(\frac{2}{3}+\frac{3}{5}+\frac{3}{4}\)

B = \(\frac{121}{60}\)

27 tháng 6 2018

cái này tính từng phân số  theo quy luật từ dưới lên trên rồi tính B là ra

18 tháng 4 2016

\(\frac{1}{3^2}<\frac{1}{3.4}\)

\(\frac{1}{4^2}<\frac{1}{4.5}\)

\(\frac{1}{5^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)

Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)

hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

17 tháng 4 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2

Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100

A<1/2-1/100<1/2

Ta có điều phải chứng minh.

4 tháng 4 2016

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}\)

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(S<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(S<\frac{1}{2}-\frac{1}{20}<\frac{1}{2}\)

Vậy \(S<\frac{1}{2}\)

4 tháng 4 2016

Cám ơn bạn rất nhiều hjhj

3 tháng 5 2015

\(\frac{1}{b}-\frac{1}{b-1}=\frac{b-1}{b.\left(b-1\right)}-\frac{b}{b.\left(b-1\right)}=\frac{b-1-b}{b.\left(b-1\right)}=\frac{-1}{b.\left(b-1\right)}=\frac{1}{b.b}=\frac{1}{b^2}\)(Do trong 2 phân số có cùng tử dương, phân số nào có mẫu bé hơn thì lớn hơn)       (2)

Từ (1) và (2) suy ra điều phải chứng tỏ.

 

 

13 tháng 8 2015

a)  \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)

B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)

BÀI 2:

A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)

\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)

\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)

\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)

b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)

\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)

ngoặc 1 có 99 số hạng x

\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3.\frac{99}{100}=1\)

\(\Leftrightarrow99x=1+\frac{3.99}{100}\)

\(\Leftrightarrow99x=\frac{397}{100}\)

\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)

 

26 tháng 3 2017

a) 4/3 - x = 3/5 + 1/2

=> 4/3 - x= 0,8

=> x = 4/3 + 0/8 

=> x = 5/8

26 tháng 3 2017

b) ( 1/2 + 1/3 +1/6)x = 2/9

= 1x = 2/9 

=> x = 2/9

14 tháng 4 2019

ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

          \(B=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

          \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)

            \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)

             \(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

\(\Rightarrow\)\(B=A\)