K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tổng số lần sạc pin: \(n = 2 + 5 + 7 + 6 + 3 = 23\)

• Thời gian sử dụng trung bình từ lúc chị An sạc đầy pin điện thoại cho tới khi hết pin là: \(\bar x = \frac{{2.8 + 5.10 + 7.12 + 6.14 + 3.16}}{{23}} \approx 12,26\) (giờ)

b) Gọi \({x_1};{x_2};...;{x_{23}}\) là thời gian sử dụng từ lúc chị An sạc đầy pin điện thoại cho tới khi hết pin được xếp theo thứ tự không giảm.

Ta có:

\({x_1},{x_2} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array};{x_3},...,{x_7} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array};{x_8},...,{x_{14}} \in \begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array};{x_{15}},...,{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array};{x_{21}},{x_{22}},{x_{23}} \in \begin{array}{*{20}{c}}{\left[ {15;17} \right)}\end{array}\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_6}\).

Ta có: \(n = 23;{n_m} = 5;C = 2;{u_m} = 9;{u_{m + 1}} = 11\)

Do \({x_6} \in \begin{array}{*{20}{l}}{\left[ {9;11} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 9 + \frac{{\frac{{23}}{4} - 2}}{5}.\left( {11 - 9} \right) = 10,5\)

Vậy nhận định của chị An hợp lí.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Số cuộc gọi của người đó trong một tuần là \(n = 8 + 10 + 7 + 5 + 2 + 1 = 33\).

Gọi \({x_1};{x_2};...;{x_{33}}\) là thời gian thực hiện cuộc gọi của người đó trong một tuần được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_8} \in \left[ {0;60} \right);{x_9},...,{x_{18}} \in \left[ {60;120} \right);{x_{19}},...,{x_{25}} \in \left[ {120;180} \right);{x_{26}},...,{x_{30}} \in \left[ {180;240} \right);\) \({x_{31}},{x_{32}} \in \left[ {240;300} \right);{x_{33}} \in \left[ {300;360} \right)\).

• Tứ phân vị thứ hai của dãy số liệu là: \({x_{17}}\) thuộc nhóm \(\begin{array}{*{20}{l}}{\left[ {60;120} \right)}\end{array}\)

Ta có: \(n = 33;{n_m} = 10;C = 8;{u_m} = 60;{u_{m + 1}} = 120\)

Tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 60 + \frac{{\frac{{33}}{2} - 8}}{{10}}.\left( {120 - 60} \right) = 111\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_8} + {x_9}} \right)\).

Do \({x_8} \in \left[ {0;60} \right),{x_9} \in \left[ {60;120} \right)\) nên tứ phân vị thứ nhất của dãy số liệu là: \({Q_1} = 60\).

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\).

Do \({x_{25}} \in \left[ {120;180} \right),{x_{26}} \in \left[ {180;240} \right)\) nên tứ phân vị thứ ba của dãy số liệu là: \({Q_3} = 180\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

Tổng số viên pin là: \(n = 10 + 20 + 35 + 15 + 5 = 85\).

• Điện lượng trung bình của một số viên pin tiểu sau khi ghép nhóm là:

\(\bar x = \frac{{10.0,925 + 20.0,975 + 35.1,025 + 15.1,075 + 5.1,125}}{{85}} \approx 1,02\left( {mAh} \right)\)

• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\begin{array}{*{20}{c}}{\left[ {1,0;1,05} \right)}\end{array}\).

Do đó: \({u_m} = 1,0;{n_{m - 1}} = 20;{n_m} = 35;{n_{m + 1}} = 15;{u_{m + 1}} - {u_m} = 1,05 - 1,0 = 0,05\)

Mốt của mẫu số liệu ghép nhóm là:

\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,0 + \frac{{35 - 20}}{{\left( {35 - 20} \right) + \left( {35 - 15} \right)}}.0,05 \approx 1,02\left( {mAh} \right)\)

Gọi \({x_1};{x_2};...;{x_{85}}\) là điện lượng của các viên pin được xếp theo thứ tự không giảm.

Ta có:

\(\begin{array}{l}{x_1},...,{x_{10}} \in \begin{array}{*{20}{c}}{\left[ {0,9;0,95} \right)}\end{array};{x_{11}},...,{x_{30}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {0,95;1,0} \right)}\end{array}}\end{array};{x_{31}},...,{x_{65}} \in \begin{array}{*{20}{c}}{\left[ {1,0;1,05} \right)}\end{array};\\{x_{66}},...,{x_{80}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {1,05;1,1} \right)}\end{array}}\end{array};{x_{81}},...,{x_{85}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {1,1;1,15} \right)}\end{array}}\end{array}}\end{array}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \({x_{43}}\)

Ta có: \(n = 85;{n_m} = 35;C = 10 + 20 = 30;{u_m} = 1,0;{u_{m + 1}} = 1,05\)

Do \({x_{43}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {1,0;1,05} \right)}\end{array}}\end{array}}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 1,0 + \frac{{\frac{{85}}{2} - 30}}{{35}}.\left( {1,05 - 1,0} \right) \approx 1,02\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_{21}} + {x_{22}}} \right)\).

Ta có: \(n = 85;{n_m} = 20;C = 10;{u_m} = 0,95;{u_{m + 1}} = 1,0\)

Do \({x_{21}},{x_{22}} \in \begin{array}{*{20}{c}}{\left[ {0,95;1,0} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 0,95 + \frac{{\frac{{85}}{4} - 10}}{{20}}.\left( {1,0 - 0,95} \right) \approx 0,98\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{64}} + {x_{65}}} \right)\).

Ta có: \(n = 85;{n_j} = 35;C = 10 + 20 = 30;{u_j} = 1,0;{u_{j + 1}} = 1,05\)

Do \({x_{64}},{x_{65}} \in \begin{array}{*{20}{c}}{\left[ {1,0;1,05} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 1,0 + \frac{{\frac{{3.85}}{4} - 30}}{{35}}.\left( {1,05 - 1,0} \right) \approx 1,048\)

a: Cường độ trung bình là:

\(I\left(t\right)=\dfrac{Q\left(t\right)-Q\left(t0\right)}{t-t0}\)

b: Cho biết cường độ trung bình khi t chạy tới t0 thì ngày càng được thể hiện chính xác hơn, rõ ràng hơn.

Thắng muốn chuyển cho Hà 5000 đồng từ tài khoản của mình bằng tin nhắn SMS nhưng Thắng lại không nhớ mật khẩu chuyển tiền. Thắng gọi tổng đài để xin lại mật khẩu chuyển tiền đã bị quên và tổng đài yêu cầu Thắng cung cấp 5 số điện thoại liên lạc gần nhất. Trong nhật ký cuộc gọi của Thắng chỉ còn lưu lại 10 số điện thoại thuộc mạng viettel, 2 số điện thoại thuộc mạng mobifone và 2...
Đọc tiếp

Thắng muốn chuyển cho Hà 5000 đồng từ tài khoản của mình bằng tin nhắn SMS nhưng Thắng lại không nhớ mật khẩu chuyển tiền. Thắng gọi tổng đài để xin lại mật khẩu chuyển tiền đã bị quên và tổng đài yêu cầu Thắng cung cấp 5 số điện thoại liên lạc gần nhất. Trong nhật ký cuộc gọi của Thắng chỉ còn lưu lại 10 số điện thoại thuộc mạng viettel, 2 số điện thoại thuộc mạng mobifone và 2 số điện thoại thuộc mạng vinaphone mà Thắng đã liên lạc gần nhất với thời điểm tổng đài yêu cầu. Tính xác suất để Thắng chọn được 5 số điện thoại từ các số đó sao cho phải có đủ ba loại nhà mạng khác nhau và nếu trong 5 số được chọn có số Hà thì các số cùng mạng với Hà không được chọn. Biết rằng Thắng dùng mạng viettel và số điện thoại của Hà có trong nhật ký cuộc gọi gần đây nhất của Thắng.

1
5 tháng 2 2017

khó vậy

NV
2 tháng 11 2021

Không gian mẫu: \(n\left(\Omega\right)=10!\)

Chọn 5 chữ số từ 6 chữ số còn lại (khác 0,3,6,8): có \(C_6^5\) cách

Hoán vị 6 chữ số (5 chữ số được chọn nói trên và số 8): \(6!\) cách

Tổng cộng: \(6!.C_6^5\) số

Xác suất: \(P=\dfrac{6!.C_6^5}{10!}=...\)

22 tháng 9 2023

Tham khảo:

a)

b) Không thể tính chính xác, chúng ta chỉ có thể tinh số gần đúng thời gian tự học trung bình của các học sinh trong lớp

c) Giá trị đại diện của nhóm bằng trung bình giá trị đầu mút phải và trái của nhóm đó

Nhóm \( \ge 4.5\) là nhóm mở nên ta dựa theo nhóm gần đó nhất là nhóm [3;4.5) để lấy giá trị đại diện

Số trung binh của mẫu số liệu: : \(\bar x = \frac{{0.75 \times 8 + 2.25 \times 23 + 2.75 \times 6 + 5.25 \times 3}}{{40}} = 2.25\).

22 tháng 9 2018

Đáp án C.

Công thức tổng quát của cường độ dòng điện tại thời gian t là:

\(I\left(t\right)=q'\left(t\right)=Q_0\cdot\omega\cdot cos\left(\omega t\right)\)

=>\(I\left(6\right)=10^{-8}\cdot10^6\cdot\pi\cdot cos\left(10^6\cdot pi\cdot6\right)=0.01\pi\left(A\right)\)