Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x7-26x6+27x5-47x4-77x3+50x2+x-24
=x7-25x6-x6+25x5+2x5-50x4+3x4-75x3-2x3+50x2+x-24
= x6(x+(-25))-x5(x-25)+2x4(x-25)+3x3(x-25)
-2x2(x-25)+x-24
Thay x=25 vào biểu thức :
=>25 -24=1
Vậy C=1
Nếu \(x=25\)
\(\Rightarrow\left\{{}\begin{matrix}26=x+1\\27=x+2\\47=2x-3\\77=3x+2;50=2x;24=x-1\end{matrix}\right.\) ( * )
Thay ( * ) vào C , ta được :
\(C=x^7-\left(x+1\right)x^6+\left(x+2\right)x^5-\left(2x-3\right)x^4-\left(3x+2\right)x^3+2x.x^2+x-\left(x-1\right)\)
\(=x^7-x^7-x^6+x^6+2x^5-2x^5+3x^4-3x^4-2x^3+2x^3+x-x+1\)
\(=1\)
Vậy \(C=1\) tại \(x=25\)
a)\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(A=x^5-(99+1)x^4 +(99+1)x^3-(99+1)x^2+(99+1)x-9\)
Tại x=99 , ta có :
\(A=x^5 - (x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-9\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)
\(A=x-9\)
Thay x = 99 vào biểu thức A ta có :
\(A=99-9=90\)
a, \(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)\(=\left(x^4-x^3+x^2-x\right)\left(x-99\right)+x-9\)
Thay x = 99
\(\Rightarrow A=90\)
Vậy A = 90 tại x = 99
b, \(B=x^7-26x^6+27x^5-47x^4-77x^3+50x^3+50x^2+x-24\)
\(=x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)
\(=x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)
\(=\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)
Thay x = 25
\(\Rightarrow B=1\)
Vậy B = 1 tại x = 25
giúp mình với mọi người
Giá trị của biểu thức C tại x=25 là C(25).
Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.
Ta dùng sơ đồ Hooc-ne để tìm số dư này:
Vậy: C(25)=1 (Bạn có thể dùng máy tính kiểm tra).