Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, S = 2 + 22 + 23 + ...+ 220
2S = 22 + 23 +...+ 220 + 221
2S - S = 221 - 2
S = 221 - 2
b, A = 5 + 52 + 53 +...+ 596
5A = 52 + 53 +...+ 596 + 597
5A - A = 597 - 5
4A = 597 - 5
A = \(\dfrac{5^{97}-5}{4}\)
1) C = 5 + 52 + 53 + 54 + ... + 520
= (5 + 52) + (53 + 54) + ... +(519 + 520)
= (5 + 52) + 52(5 + 52) + .... + 518(5 + 52)
= (5 + 52)(1 + 52 + ... + 518)
= 26(1 + 52 + ... + 518)
= 13.2.(1 + 52 + ... + 518) \(⋮\)13 (ĐPCM)
2) a) A = 24 + 25 + 26 + 27 + 28 + 29
= (24 + 25) + (26 + 27) + (28 + 29)
= 24(1 + 2) + 26(1 + 2) + 28(1 + 2)
= (1 + 2)(24 + 26 + 28)
= 3(24 + 26 + 28) \(⋮3\)
b) B = 317 + 318 + 319 + 320 + 321 + 322
= (317 + 318 + 319) + (320) + 321 + 322)
= 317(1 + 3 + 32) + 320(1 + 3 + 32)
= (1 + 3 + 32)(317 + 320)
= 13(317 + 320) \(⋮\)13
Bài 1:
C = 5+52 +53+.....+520
=(5+52+53+54)+.....+(517+518+519+520)
=5.(1+5+52+53)+.....+517(1+5+52+53)
=5.156+....+517.156
=156.(5+...+517)=13.12.(5+....+517) chia hết cho 13
Bài 2:
A=24+25+26+27+28+29
=(24+25)+(26+27)+(28+29)
=24(1+2)+26(1+2)+28(1+2)
=24.3+26.3+28.3
=3.(24+26+28) chia hết cho 3
b)
B=317+318+319+320+321+322
=(317+318+319)+(320+321+322)
=317(1+3+32)+320(1+3+32)
=317.13+320.13
=13.(317+320)chia hết cho 13
#CừU
a. \(2^2.2^3.2^{15}=2^{20}\)
\(3^{24}.3^{14}=3^{38}\)
\(c.5^{16}.5^9=5^{25}\)
\(d.3^{12}.3^{15}=3^{27}\)
\(a,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Leftrightarrow x=\dfrac{41}{35}\)
\(b,\dfrac{5}{7}-\dfrac{1}{13}+\dfrac{1}{4}=\dfrac{31}{2}-x\\ \Leftrightarrow x=\dfrac{5319}{364}\)
\(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)\)
\(A=\dfrac{2}{3}+\dfrac{-1}{3}\)
\(A=\dfrac{1}{3}\)
_____
( *Xem lại câu B nha bạn )
_____
\(C=\left(\dfrac{3}{4}-0,2\right).\left(0,4-\dfrac{4}{5}\right)\)
\(C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right).\left(\dfrac{2}{5}-\dfrac{4}{5}\right)\)
\(C=\dfrac{11}{20}.\dfrac{-2}{5}\)
\(C=\dfrac{-11}{50}\)
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
\(a.S=2+2^2+2^3+...+2^{20}\\2S=2^2+2^3+...+2^{21}\\ 2S-S=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+2^3+...+2^{20}\right)\\ S=2^{21}-2\\ b,A=5+5^2+5^3+...+5^{96}\\ 5A=5^2+5^3+5^4+.......+5^{97}\\ 5A-A=\left(5^2+5^3+...+5^{97}\right)-\left(5+5^2+5^3+...+5^{96}\right)\\ 4A=5^{97}-5\\ A=\dfrac{5^{97}-5}{4}\)
\(S=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow S=2\left(1+2^1+2^2+...+2^{19}\right)\)
\(\Rightarrow S=2.\dfrac{2^{19+1}-1}{2-1}=2\left(2^{20}-1\right)\)
\(B=5+5^2+5^3+...+5^{96}\)
\(\Rightarrow B=5\left(1+5^1+5^2+...+5^{95}\right)\)
\(\Rightarrow B=5.\dfrac{5^{95+1}-1}{5-1}=\dfrac{5\left(5^{96}-1\right)}{4}\)