Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn
\(0+1+2+3+4\le S\le9+8+7+6+5\)
\(\Rightarrow10\le S\le35\)
Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)
Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:
TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18:
- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách
Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A
Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B
- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ
Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số
Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số
TH2: A chứa 9 mà ko chứa 0:
\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9
TH3: A chứa cả 0 lẫn 9:
\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234; có 3 bộ
Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số
Hoán vị 5 chữ số tập B: \(3.5!=360\) số
TH4: A ko chứa cả 0 lẫn 9:
Có các bộ 12348; 12357; 12456 tổng 3 bộ
Hoán vị tập A: có \(3.5!=360\) số
Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số
\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số
Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.
+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.
+ Số có 2 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.
Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).
=> Có \(9 + 8 = 17\) (số)
+ Số có 3 chữ số chia hết cho 5:
Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.
Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.
=> Có 9.8+8.8 = 136 (số)
Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.
Ta có A1 = { 0;2;4;6;8 }
A2 = { 1;3;5;7;9 }
Theo bài ra ta có
TH1 : chọn 5 chữ số abcde tập A1 có
e có 5 cách chọn ; a có 3 cách ; b có 3 cách ; c có 2 cách ; d có 1 cách
-> 90 cách
TH2 : chọn 5 chữ số tập A2 có
a có 5 cách chọn ; b có 4 cách ; c có 3 cách ; d có 2 cách ; e có 1 cách
-> 120 cách
TH3 : chọn 3 chữ số tập A1 ; 2 chữ số tập A2 ta có
\(120.5C3.5C2-24.4C2.5C2=10560\) cách
-> Có tổng 10770 cách
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
a) - chữ số hàng trăm có 9 cách (khác 0)
- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)
- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)
Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.
b) - Chọn chữ số hàng đơn vị có 5 cách
- Chọn chữ số hàng trăm có 8 cách
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.
c) - Chọn chữ số hàng đơn vị có 2 cách
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 10 cách
Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.
d) Trường hợp 1: chữ số hàng đơn vị là 0.
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 8 cách
Trường hợp 2 chữ số hàng đơn vị là 5:
- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp
{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5}
\(7.3!=42\)cách
mình sửa bài nhé
Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp
{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5} ; {1;2;6} ; {1;3;5} ; {1;8;0} ; {2;3;4} ; {2;6;1} ; {2;7;0} ; {3;6;0} ; {3;5;1}
\(12.3!+3.2=78\)cách