K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp 

{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5} 

\(7.3!=42\)cách 

29 tháng 4 2023

mình sửa bài nhé 

Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp 

{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5} ; {1;2;6} ; {1;3;5} ; {1;8;0} ; {2;3;4} ; {2;6;1} ; {2;7;0} ; {3;6;0} ; {3;5;1}

\(12.3!+3.2=78\)cách 

NV
18 tháng 3 2023

Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn 

\(0+1+2+3+4\le S\le9+8+7+6+5\)

\(\Rightarrow10\le S\le35\)

Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)

Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:

TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18: 

- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách

Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A

Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B

- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ

Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số

Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số

TH2: A chứa 9 mà ko chứa 0:

\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9

TH3: A chứa cả 0 lẫn 9:

\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234;  có 3 bộ

Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số

Hoán vị 5 chữ số tập B: \(3.5!=360\) số

TH4: A ko chứa cả 0 lẫn 9:

Có các bộ 12348; 12357; 12456 tổng 3 bộ

Hoán vị tập A: có \(3.5!=360\) số

Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số

\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số

18 tháng 3 2023

Anh là giáo sư toán rồi ạ, anh giỏi quá =))

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.

+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.

+ Số có 2 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.

Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).

=> Có \(9 + 8 = 17\) (số)

+ Số có 3 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.

Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.

=> Có 9.8+8.8 = 136 (số)

Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.

23 tháng 3 2023

Ta có A1 = { 0;2;4;6;8 } 

A2 = { 1;3;5;7;9 } 

Theo bài ra ta có 

TH1 : chọn 5 chữ số abcde tập A1 có

e có 5 cách chọn ; a có 3 cách ; b có 3 cách ; c có 2 cách ; d có 1 cách 

-> 90 cách 

TH2 : chọn 5 chữ số tập A2 có 

a có 5 cách chọn ; b có 4 cách ; c có 3 cách ; d có 2 cách ; e có 1 cách 

-> 120 cách 

TH3 : chọn 3 chữ số tập A1 ; 2 chữ số tập A2 ta có 

\(120.5C3.5C2-24.4C2.5C2=10560\) cách 

->  Có tổng 10770 cách 

 

 

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

a) - chữ số hàng trăm có 9 cách (khác 0)

- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)

- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)

Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.

b) - Chọn chữ số hàng đơn vị có 5 cách 

- Chọn chữ số hàng trăm có 8 cách

- Chọn chữ số hàng chục có 8 cách 

Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.

c) - Chọn chữ số hàng đơn vị có 2 cách 

- Chọn chữ số hàng trăm có 9 cách

- Chọn chữ số hàng chục có 10 cách

Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.

d) Trường hợp 1: chữ số hàng đơn vị là 0.

- Chọn chữ số hàng trăm có 9 cách 

- Chọn chữ số hàng chục có 8 cách

Trường hợp 2 chữ số hàng đơn vị là 5:

- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)

- Chọn chữ số hàng chục có 8 cách

Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau  và chia hết cho 5.

8 tháng 2 2023

a) Ta đặt mẫu chung là: abcd (a khác 0)

- Có 9 cách chọn a

- Có 9 cách chọn b

- Có 8 cách chọn c

- Có 7 cách chọn d

Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)

b) Ta đặt mẫu chung là: abcd

- Có 5 cách chọn a

- Có 4 cách chọn b

- Có 3 cách chọn c

- Có 2 cách chọn d

Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)

c) Ta lập dãy số: 1000; 1005; 1010;...; 9995

Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị

Áp dụng công thức dãy số cách đều, ta có số số hạng là:

(9995 - 1000) : 5 + 1 = 1800 (số)

d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)

Trường hợp d = 0

- Có 9 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)

Trường hợp d = 5

- Có 8 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)

Ta lập được là: 504 + 448 = 952 (số)

Đ/S

HT

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách