Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
a) - chữ số hàng trăm có 9 cách (khác 0)
- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)
- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)
Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.
b) - Chọn chữ số hàng đơn vị có 5 cách
- Chọn chữ số hàng trăm có 8 cách
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.
c) - Chọn chữ số hàng đơn vị có 2 cách
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 10 cách
Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.
d) Trường hợp 1: chữ số hàng đơn vị là 0.
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 8 cách
Trường hợp 2 chữ số hàng đơn vị là 5:
- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.
TH1: Hàng đơn vị là 0
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)
TH2: Hàng đơn vị là 5
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)
Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)
Đáp số: 3150 số thoả mãn
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
Ta có A1 = { 0;2;4;6;8 }
A2 = { 1;3;5;7;9 }
Theo bài ra ta có
TH1 : chọn 5 chữ số abcde tập A1 có
e có 5 cách chọn ; a có 3 cách ; b có 3 cách ; c có 2 cách ; d có 1 cách
-> 90 cách
TH2 : chọn 5 chữ số tập A2 có
a có 5 cách chọn ; b có 4 cách ; c có 3 cách ; d có 2 cách ; e có 1 cách
-> 120 cách
TH3 : chọn 3 chữ số tập A1 ; 2 chữ số tập A2 ta có
\(120.5C3.5C2-24.4C2.5C2=10560\) cách
-> Có tổng 10770 cách
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số