Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Số phần tử của không gian mẫu bằng số cách lấy 3 hộp sữa từ 12 hộp và bằng C 12 3 = 220.
Số kết quả thuận lợi cho biến cố bằng số cách lấy 3 hộp sữa từ 12 hộp sao cho có đủ cả ba loại và bằng C 5 1 . C 4 1 . C 3 1 = 60. Do đó xác xuất để ba hộp sữa được chọn có cả ba loại là 60 220 = 3 11 .
Để trả lời câu hỏi này, trước tiên chúng ta cần tính xác suất của từng giá trị có thể có của X, đại diện cho số hộp bị lỗi.
a, Lập bảng, ta có:
Lô 1 | Lô 2 |
Hỏng | Hỏng |
Hỏng | hỏng |
Hỏng | Hỏng |
Hỏng | Hỏng |
Xác suất của mỗi kết quả là tích của xác suất chọn một hộp từ mỗi lô:
P ( Hỏng, Hỏng ) = ( 25/ 30) . ( 24/ 30 ) = 0,5556
P ( Hỏng, Hỏng ) = ( 25/ 30 ) . ( 6/ 30 ) = 0,0833
P ( Hỏng, Hỏng ) = ( 5/ 30 ) . ( 24/ 30 ) = 0, 0833
P ( Hỏng, Hỏng ) = ( 5/ 30 ) . ( 6/ 30 ) = 0, 0139
b, Gía trị kì vọng của X là tổng số các tích của từng giá trị có thể có của X và xác suất tương ứng của nó:
E (X) = 0x 0,5556 + 1x 0,1667 + 2x 0, 0278 = 0, 2222
Phương sai của X là:
Var(X) = (0- 0,2222)^2 x 0,5556 + (1-0,2222)^2 x 0,1667 + (2-0,2222)^2 x 0,0278 = 0,3407
Do đó, số hộp bị lỗi dự kiến là 0,2222 và phương sai là 0,3407.
Không gian mẫu: \(C_{17}^5\)
a. Số cách chọn sao cho có đúng 3 nam (nghĩa là chọn 3 nam từ 9 nam và 2 nữ từ 8 nữ):
\(n_A=C_9^3.C_8^2\)
Xác suất: \(P_A=\dfrac{C_9^3.C_8^2}{C_{17}^5}=...\)
b. Chọn nhiều nhất 1 nữ nghĩa là ta có 2 TH có thể xảy ra: có 1 nữ và 4 nam hoặc cả 5 đều nam
Số cách chọn: \(n_B=C_8^1.C_4^9+C_9^5\)
Xác suất: \(P_B=\dfrac{C_8^1.C_9^4+C_9^5}{C_{17}^5}=...\)
Có 6 cách chọn bi xanh.
Với mỗi cách chọn bi xanh có 6 cách chọn bi vàng để khác số.
Với mỗi cách chọn đó ta lại có 6 cách chọn bi đỏ để khác số với 2 quả vừa chọn.
Xác suất cần tìm là: \(\dfrac{6^3}{C_{21}^3}=\dfrac{108}{665}\).
Đề bài sai bạn
Tổng cộng chỉ có 3 hộp hư, thì dù lấy thế nào cũng không thể nhiều hơn 3 hộp hư nên xác suất luôn bằng 1