K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

cần cm cụ thể

 

11 tháng 9 2018

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=15.256.\)

\(2^x+2.2^x+4.2^x+8.2^x=15.256\)

\(15.2^x=15.256\Rightarrow2^x=256=2^8\Rightarrow x=8\)

\(\Rightarrow15.256=2^8+2^9+2^{10}+2^{11}\)

17 tháng 6 2016

Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))

Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.

Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.

Vậy ta có điều phải chứng minh.

16 tháng 8 2015

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

25 tháng 7 2016

Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:

x(x+2)(x+4)(x+6) + 16

= x(x+6)(x+2)(x+4) + 16

= ( x2 + 6x)( x2+6x+8) + 16 (*)

Đặt x2 + 6x= a. Thay vào (*) ta lại có

(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2

Thay a= x2 + 6x vào ta có:

(*)= ( x2 + 6x + 4)2

Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.

Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương

16 tháng 9 2018

BÀI GIẢI 
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6. 
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6) 
Ta có : 
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16 
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16 
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16 
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16 
A = 16a^4 + 96a^3 + 176a^2 + 96a +16 
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16 
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4) 
A = (4a^2 + 12a + 4)^2 (1) 

Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2) 

(1)(2)=> A là số chính phương 
=> Đpcm