K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2018

Theo BĐT Cô-si ta có: với hai số dương a, b: \(\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow\dfrac{1}{\sqrt{a.b}}\ge\dfrac{2}{a+b}\)

Dấu "=" xảy ra khi a=b

Áp dụng vào bài toán:

\(\dfrac{1}{\sqrt{1.199}}+\dfrac{1}{\sqrt{2.198}}+...+\dfrac{1}{\sqrt{199.1}}>\dfrac{2}{1+199}+\dfrac{2}{2+198}+...+\dfrac{2}{199+1}\)

\(VT>\dfrac{2}{200}+\dfrac{2}{200}+...+\dfrac{2}{200}\) (199 thừa số)

\(VT>\dfrac{2.199}{200}=1.99\) (đpcm)

26 tháng 7 2018

\(S=\dfrac{1}{\sqrt{1.2012}}+\dfrac{1}{\sqrt{2.2011}}+...+\dfrac{1}{\sqrt{2012.1}}>\dfrac{1}{\dfrac{1+2012}{2}}+\dfrac{1}{\dfrac{2+2011}{2}}+...+\dfrac{1}{\dfrac{2012+1}{2}}=\dfrac{2012}{\dfrac{2013}{2}}=\dfrac{4024}{2013}\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

27 tháng 6 2018

thanks boy

2 tháng 6 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)

Tương tự cho 2 BĐT trên ta có:

\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)

Xảy ra khi \(x=y=z\)

26 tháng 11 2018

Ta có:\(B=\dfrac{2}{2\sqrt{1}}+\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+...+\dfrac{2}{2\sqrt{48}}\)

\(B>\dfrac{2}{\sqrt{1}+\sqrt{2}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{2}{\sqrt{3}+\sqrt{4}}+...+\dfrac{2}{\sqrt{48}+\sqrt{49}}\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{49}-\sqrt{48}\right)\)

\(B>2\cdot\left(-1+\sqrt{49}\right)=12\)(đpcm)

15 tháng 9 2023

help

loading...  => đề sai rồi bạn

30 tháng 9 2018

Đặt A=\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+....+\dfrac{2}{2\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{3}}+....+\dfrac{2}{\sqrt{99}+\sqrt{99}}+\dfrac{2}{\sqrt{100}+\sqrt{100}}\)

\(\Leftrightarrow A=2\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{99}}+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\)

Ta có:

\(\dfrac{1}{\sqrt{2}+\sqrt{2}}< \dfrac{1}{1+\sqrt{2}};\dfrac{1}{\sqrt{3}+\sqrt{3}}< \dfrac{1}{\sqrt{2}+\sqrt{3}}\)

Tường tự, ta có:

\(\dfrac{A}{2}< \dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(A< 2\left(\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\right)\)

\(A< -2\left(1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...-\sqrt{99}+\sqrt{99}-\sqrt{100}\right)\)

\(A< -2\left(1-\sqrt{100}\right)\)

\(A< 18\)

Vậy\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)