Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{8}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =2\sqrt{2}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =4\sqrt{2}+4\sqrt{7}\)
\(B=\left(3+2\sqrt{6}+2\right)\left(25-20\sqrt{6}+24\right)\sqrt{3-2\sqrt{6}+2}\\ =\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\\ =\left(\sqrt{3}+\sqrt{2}\right)\left(3-2\sqrt{6}+2\right)^2\\ =\left(\sqrt{3}-\sqrt{2}\right)^3\\ =9\sqrt{3}-11\sqrt{2}\)
Bài 2:
a) \(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
b) \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
c) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
\(=\dfrac{\left(3+\sqrt{3}\right)^2+\left(3-\sqrt{3}\right)^2}{6}\)
\(=\dfrac{12+6\sqrt{3}+12-6\sqrt{3}}{6}=4\)
Bài 1:
a) Đúng
b) Sai vì \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
c) Sai vì \(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}+1\)
e) Đúng
Đặt \(\left\{{}\begin{matrix}\sqrt{\sqrt{2}+1}=a\\\sqrt{\sqrt{2}-1}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=2\sqrt{2}=\sqrt{8}\)
\(\Rightarrow\sqrt{a^2+b^2}=\sqrt[4]{8}\)
Do đó:
\(A=\dfrac{\sqrt{\sqrt{a^2+b^2}+b}-\sqrt{\sqrt{a^2+b^2}-b}}{\sqrt{\sqrt{a^2+b^2}-a}}>0\)
\(\Rightarrow A^2=\dfrac{2\sqrt{a^2+b^2}-2\sqrt{a^2+b^2-b^2}}{\sqrt{a^2+b^2}-a}=\dfrac{2\left(\sqrt{a^2+b^2}-a\right)}{\sqrt{a^2+b^2}-a}=2\)
\(\Rightarrow A=\sqrt{2}\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
c: \(\sqrt[3]{-27}+\sqrt{2}\cdot\sqrt{8}\)
\(=-3+4\)
=1
\(a.\sqrt{72}-5\sqrt{2}+3\sqrt{12}\\ =6\sqrt{2}-5\sqrt{2}+6\sqrt{3}\\ =\sqrt{2}+6\sqrt{3}\\ b.6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\\ =3\sqrt{2}-\sqrt{2}-5\sqrt{2}\\ =-3\sqrt{2}\\ c.\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\\ =2+1+\sqrt{3}-\sqrt{3}\\ =3\\ d.\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\\ =4+3+4\\ =11\)