Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}\)
\(A=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{n}+\sqrt{n}}\)
\(A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)
\(A>2\left(\sqrt{n+1}-1\right)\)
Cần cm:\(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)
\(\Leftrightarrow4\left(n+1\right)+4-8\sqrt{n+1}>n\)
\(\Leftrightarrow3n+8>8\sqrt{n+1}\)
Lại có:\(8\sqrt{n+1}\le2\left(n+1\right)+8=2n+10\le3n+8\)(AM-GM)
Dấu "=" không xảy ra
=>đpcm
a/ \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}=1+\dfrac{1}{2.2}+...+\dfrac{1}{n.n}\)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(=1+1-\dfrac{1}{n}=2-\dfrac{1}{n}< 2\)
bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm
Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)
\(=2\left(\sqrt{n+1}-1\right).\)
Bạn ghi sai đề à? Số đầu tiên phải là \(\dfrac{1}{\sqrt{1}}\) chứ sao là \(\dfrac{1}{\sqrt{n}}\), mặc dù đề như vậy làm vẫn được nhưng chắc chẳng ai cho dãy quy luật kiểu đó
\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=2\left(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+...+\dfrac{1}{2\sqrt{n}}\right)\)
\(\Rightarrow A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(\Rightarrow A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)
Ta chứng minh \(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\Leftrightarrow2\sqrt{n+1}>\sqrt{n}+2\)
\(\Leftrightarrow4\left(n+1\right)>n+4+4\sqrt{n}\Leftrightarrow3n>4\sqrt{n}\Leftrightarrow\sqrt{n}>\dfrac{4}{3}\)
\(\Leftrightarrow n>\dfrac{16}{9}\) (đúng với mọi \(n\ge2\) )
Vậy \(A>\sqrt{n}\)
- Ta chứng minh tiếp \(A< 2\sqrt{n}\)
\(A=1+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=1+\dfrac{2}{2\sqrt{2}}+...+\dfrac{2}{2\sqrt{n}}\)
\(\Rightarrow A< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{n}-1\right)=2\sqrt{n}-1< 2\sqrt{n}\) (đpcm)
Vậy: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
Nguyễn Việt Lâmtran nguyen bao quanBạch Tuyên NghiNguyễn Thanh Hằng help me