K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2018

Bạn ghi sai đề à? Số đầu tiên phải là \(\dfrac{1}{\sqrt{1}}\) chứ sao là \(\dfrac{1}{\sqrt{n}}\), mặc dù đề như vậy làm vẫn được nhưng chắc chẳng ai cho dãy quy luật kiểu đó

\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=2\left(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+...+\dfrac{1}{2\sqrt{n}}\right)\)

\(\Rightarrow A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)

\(\Rightarrow A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)

Ta chứng minh \(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\Leftrightarrow2\sqrt{n+1}>\sqrt{n}+2\)

\(\Leftrightarrow4\left(n+1\right)>n+4+4\sqrt{n}\Leftrightarrow3n>4\sqrt{n}\Leftrightarrow\sqrt{n}>\dfrac{4}{3}\)

\(\Leftrightarrow n>\dfrac{16}{9}\) (đúng với mọi \(n\ge2\) )

Vậy \(A>\sqrt{n}\)

- Ta chứng minh tiếp \(A< 2\sqrt{n}\)

\(A=1+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=1+\dfrac{2}{2\sqrt{2}}+...+\dfrac{2}{2\sqrt{n}}\)

\(\Rightarrow A< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{n}-1\right)=2\sqrt{n}-1< 2\sqrt{n}\) (đpcm)

Vậy: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)

24 tháng 11 2018

Nguyễn Việt Lâmtran nguyen bao quanBạch Tuyên NghiNguyễn Thanh Hằng help me

3 tháng 9 2017

quỳnh đăng lên giúp ai zậy ns đi nghe xem nào

24 tháng 5 2018

bai 1

(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)

1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]

A=..

n =1 yes

n>1

A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)

A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Với 2 số $a,b$ dương, ta luôn có BĐT quen thuộc sau:

\(a^3+b^3\geq ab(a+b)\)

Cách chứng minh rất đơn giản, biến đổi tương đương ta có:

\(a^3+b^3-ab(a+b)\geq 0\)

\(\Leftrightarrow a^2(a-b)-b^2(a-b)\geq 0\Leftrightarrow (a-b)^2(a+b)\geq 0\) (luôn đúng với mọi $a,b>0$)

---------------------------------------

Áp dụng vào bài toán:

\((n+1)\sqrt{n+1}+n\sqrt{n}=(\sqrt{n})^3+(\sqrt{n+1})^3\geq \sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})\)

\(\Rightarrow \frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(\frac{1}{2\sqrt{2}+1}< 1-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......

\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cộng theo vế:

\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\)

Ta có đpcm.

11 tháng 11 2021

\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)

Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)

Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)

\(\Leftrightarrow3n^2\ge m^2+2\)

Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)

\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)