Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)=\(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Mình nghĩ đề sai
thiếu 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) nhé tui làm mò thôi ai ngờ ra công thức
VD:2/2*3*4=1/2*3-1/3*4=1/6-1/12=1/12
mà 2/2*3*4=2*24=1/12
viết sai đề rồi phải là
CMR: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n+1}\)
\(\frac{1}{n}-\frac{1}{n-1}\)
=\(\frac{1.\left(n+1\right)}{n.\left(n+1\right)}-\frac{1.n}{n\left(n+1\right)}\)
=\(\frac{1}{n.\left(n+1\right)}\)
Ta gọi A=1.2+2.3+3.4+...+n.(n+1)
3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)
=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=> A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
bạn ơi, mình biết làm bài này nhưng cho mình biết làm sao để viết phân số vậy
\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)
\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)
\(\Rightarrow17x+17=70\)
=> không tồn tại n vì n là số tự nhiên
A=(n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\)
A=(n-1)(n+1).n.n.\(\left(n^2+1\right)\)
Mà n-1;n;n+1 là 3 số tự nhiên liên tiếp. Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.Suy ra: (n-1)(n+1).n chia hết cho 3
Suy ra: (n-1)(n+1).n.n.(\(n^2+1\)) chia hết cho 3
Suy ra (n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\) Chia hết cho 3.(đpcm)
Sử dụng phương pháp quy nạp toán học
Với n = 1, ta có:
1 = (1 + 1)/2 (đúng)
Giả sử mệnh đề đúng với n = k >= 1 (k thuộc N*), tức là:
1 + 2 + 3 + 4 +.......+ k = k(1 + k)/2
Ta sẽ chứng minh mệnh đề đúng với n = k + 1, tức là:
1 + 2 + 3 + 4 + .......+ k +1 = (k + 1)(k + 2)/2 (*)
Biến đổi tương đương, ta có:
(*) <=> 1 + 2 + 3 + 4 +......+ k + k + 1 = (k + 1)(k + 2)/2
<=> (1 + 2 + 3 + 4 +......+ k) + k + 1 = (k + 1)(k + 2)/2
<=> k(k + 1)/2 + k + 1 = (k + 1)(k + 2)/2
<=> (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2 (đúng)
Đẳng thức trên đúng
Vậy theo nguyên lý quy nạp, ta chứng minh được mệnh đề:
1 +2 + 3 + 4 +.......+ n = n(1 + n)/2
Đặt biểu thức là (*)
Với n=1
=> (*)<=> 1=\(\frac{1.\left(1+1\right)}{2}\)
Vậy với n=1 ( đúng )
Giả sử (*) đúng với n=k
=> (*) <=> 1+2+3+...+k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh n=k+1
Thật vậy n=k+1 thì
(*) <=> 1+3+3+...+k+k+1 = \(\frac{k+1.\left(k+2\right)}{2}\)
<=> \(\frac{K\left(k+1\right)}{2}+K+1=\frac{\left(k+1\right).\left(k+2\right)}{2}\)
<=> \(\frac{k}{2}+1=\frac{k+2}{2}\)
<=>\(\frac{k}{2}+1=\frac{k}{2}+1\left(đúng\right)\)
Vậy (*) đúng với n=k+1
Vậy (*) đúng với mọi số tự nhiên n ϵ N ( Khác 0 )